Problems
Problem 7.1 (LARRY)
Let a system have the following state and output equation matrices: \[\begin{aligned} A = \begin{bmatrix} -3 & 0 \\ 1 & -2 \end{bmatrix} && B = \begin{bmatrix} 0 \\ 1 \end{bmatrix} && C = \begin{bmatrix} 0 & 1 \end{bmatrix} && D = \begin{bmatrix} 0 \end{bmatrix}. \end{aligned}\] For this system, answer the following imperatives.
Find the eigenvalue matrix \(\Lambda\) and comment on the stability of the system (justify your comment). Use the convention that \(\lambda_1 \ge \lambda_2\) and order \(\Lambda\) accordingly.
Find the eigenvectors and the modal matrix \(M\).
Find the state transition matrix \(\Phi(t)\). Hint: first find the “diagonalized” state transition matrix \(\Phi^\prime(t)\).
Using the state transition matrix, find the output free response for initial condition \[\begin{aligned} \bm{x}(0) = \begin{bmatrix} 1 \\ 0 \end{bmatrix}. \end{aligned}\]
a and b Eigenvalue and modal matrices
clear; close all
Define the state-space matrices.
A = [ ...
-3, 0; ...
1, -2 ...
;
]B = [ ...
0; ...
1 ...
;
]C = [0, 1];
D = [0];
Use eig
for the
eigendecomposition. The problem asks for the eigenvalues in the order
opposite that of Matlab’s default eig
order, so we flip them in L
and M
.
M,L] = eig(A);
[M = [M(:,2),M(:,1)]
L = diag(flip(diag(L)))
M =
0.70711 0
-0.70711 1
L =
-3 0
0 -2
c State transition matrix
Proceed symbolically with the definition of the diagonalized basis state-transition matrix \(\Phi'(t)\).
syms t
Phi_p = @(t) diag(diag(exp(L*t)));
Phi_p(t)
ans =
[ exp(-3*t), 0]
[ 0, exp(-2*t)]
Now transform bases to the original basis using \[\begin{aligned} \Phi(t) = M \Phi'(t) M^{-1}. \end{aligned}\]
M_inv = M^-1;
Phi = @(t) M*Phi_p(t)*M_inv;
Phi(t)
ans =
[ exp(-3*t), 0]
[ exp(-2*t) - exp(-3*t), exp(-2*t)]
d Free output response
The free response for the output is the first term of the output response solution.
x0 = [1;0]; % initial condition
y = @(t) C*Phi(t)*x0;
y(t)
ans =
exp(-2*t) - exp(-3*t)
Plot the free output response, shown in .
y_fun = matlabFunction(y(t));
t_a = linspace(0,5,200);
figure;
plot(t_a,y_fun(t_a),'linewidth',1.5);
xlabel('time (s)')
ylabel('output response')
grid on
Problem 7.2 (MO)
Let a system have the following state and output equation matrices: \[\begin{aligned} A = \begin{bmatrix} -1 & 1 \\ 0 & -2 \end{bmatrix} && B = \begin{bmatrix} 1 \\ 0 \end{bmatrix} && C = \begin{bmatrix} 1 & 0 \end{bmatrix} && D = \begin{bmatrix} 0 \end{bmatrix}. \end{aligned}\] For this system, answer the following imperatives.
Find the eigenvalue matrix \(\Lambda\) and comment on the stability of the system (justify your comment). Use the convention that \(\lambda_1 \le \lambda_2\) and order \(\Lambda\) accordingly.
Find the eigenvectors and the modal matrix \(M\).
Find the state transition matrix \(\Phi(t)\). Hint: first find the “diagonalized” state transition matrix \(\Phi^\prime(t)\).
Using the state transition matrix, find the output homogeneous solution for initial condition \[\begin{aligned} \bm{x}(0) = \begin{bmatrix} 0 \\ 1 \end{bmatrix}. \end{aligned}\]
By recognizing that \(A\) is triangular, we identify its eigenvalues to be \(\lambda_{1,2} = -2,-1\). Therefore, the eigenvalue matrix is \[\begin{aligned} \Lambda = \begin{bmatrix} -2 & 0 \\ 0 & -1 \end{bmatrix}. \end{aligned}\] The system is stable because \(\Re{\lambda_i} < 0\) for all \(i\).
The eigenvectors are solutions to \[\begin{aligned} \bm{0} &= (\lambda_i I - A)\bm{m}_i \\ &= \left( \begin{bmatrix} \lambda_i & 0 \\ 0 & \lambda_i \end{bmatrix} - \begin{bmatrix} -1 & 1 \\ 0 & -2 \end{bmatrix} \right) \bm{m}_i \\ &= \begin{bmatrix} \lambda_i+1 & -1 \\ 0 & \lambda_i+2 \end{bmatrix} \bm{m}_i. \end{aligned}\] For \(\lambda_1 = -2\) and some constant \(\alpha\), \[\begin{aligned} \bm{0} &= \begin{bmatrix} -1 & -1 \\ 0 & 0 \end{bmatrix} \bm{m}_1 \\ &\Rightarrow \bm{m}_1 = \alpha \begin{bmatrix} 1 \\ -1 \end{bmatrix}. \end{aligned}\] For \(\lambda_2 = -1\) and some constant \(\beta\), \[\begin{aligned} \bm{0} &= \begin{bmatrix} 0 & -1 \\ 0 & 1 \end{bmatrix} \bm{m}_2 \\ &\Rightarrow \bm{m}_2 = \beta \begin{bmatrix} 1 \\ 0 \end{bmatrix}. \end{aligned}\] So the modal matrix is \[\begin{aligned} M &= \begin{bmatrix} \bm{m}_1 & | & \bm{m}_2 \end{bmatrix} \\ &= \begin{bmatrix} 1 & 1 \\ -1 & 0 \end{bmatrix}. \end{aligned}\]
The primed-basis state transition matrix is \[\begin{aligned} \Phi'(t) &= e^{\Lambda t} \\ &= \begin{bmatrix} e^{\lambda_1 t} & 0 \\ 0 & e^{\lambda_2 t} \end{bmatrix}\\ &= \begin{bmatrix} e^{-2 t} & 0 \\ 0 & e^{-t} \end{bmatrix}. \end{aligned}\] Transforming this to the original basis with the modal matrix, \[\begin{aligned} \Phi(t) &= M \Phi'(t) M^{-1} \\ &= \begin{bmatrix} 1 & 1 \\ -1 & 0 \end{bmatrix} \begin{bmatrix} e^{-2 t} & 0 \\ 0 & e^{-t} \end{bmatrix} \begin{bmatrix} 0 & -1 \\ 1 & 1 \end{bmatrix}/(1\cdot0 - 1\cdot(-1))\\ &= \begin{bmatrix} e^{-2 t} & e^{-t} \\ -e^{-2 t} & 0 \end{bmatrix} \begin{bmatrix} 0 & -1 \\ 1 & 1 \end{bmatrix} \\ &= \begin{bmatrix} e^{-t} & e^{-t} - e^{-2t} \\ 0 & e^{-2t} \end{bmatrix} \end{aligned}\]
The homogeneous output solution is \[\begin{aligned} y_h(t) &= C \bm{x}_\text{h}(t) \\ &= C \Phi(t) \bm{x}(0) \\ &= \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} e^{-t} & e^{-t} - e^{-2t} \\ 0 & e^{-2t} \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} \\ &= e^{-t} - e^{-2t}. \end{aligned}\]
Problem 7.3 (CURLY)
Use a computer for this exercise. Let a system have the following state \(A\)-matrix: \[\begin{aligned} A = \begin{bmatrix} -2 & 2 & 0 \\ -1 & -2 & 2 \\ 0 & -1 & -2 \end{bmatrix}. \end{aligned}\] For this system, answer the following imperatives.
Find the eigenvalue matrix \(\Lambda\) and modal matrix \(M\).
Comment on the stability of the system (justify your comment).
Find the diagonalized state transition matrix \(\Phi'(t)\). Be sure to print the expression. Furthermore, find the state transition matrix \(\Phi(t)\).
Using the state transition matrix, find the state free response for initial condition \[\begin{aligned} \bm{x}(0) = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}. \end{aligned}\] Do not print this expression.
Plot the free response found above for \(t \in [0,4]\) seconds.
Begin by defining the \(A\) matrix.
A = [...
-2, 2, 0;...
-1, -2, 2;...
0, -1, -2 ...
; ]
a. Eigendecomposition
The eigendecomposition is performed using the eig
function.
M,L] = eig(A) [
M =
0.6667 + 0.0000i 0.6667 + 0.0000i 0.8944 + 0.0000i
-0.0000 + 0.6667i -0.0000 - 0.6667i 0.0000 + 0.0000i
-0.3333 - 0.0000i -0.3333 + 0.0000i 0.4472 + 0.0000i
L =
-2.0000 + 2.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i
0.0000 + 0.0000i -2.0000 - 2.0000i 0.0000 + 0.0000i
0.0000 + 0.0000i 0.0000 + 0.0000i -2.0000 + 0.0000i
Let’s take a closer look at the eigenvalues.
disp(diag(L))
-2.0000 + 2.0000i
-2.0000 - 2.0000i
-2.0000 + 0.0000i
b. Stability and character of response
All three eigenvalues have negative real parts; therefore, the system is stable. There is a single pair of complex conjugate eigenvalues, which will cause the system to oscillate while decaying. The real eigenvalue will contribute a real exponential decay with the same rate as the oscillating pair.
c. State transition matrices
First, we construct \(\Phi'\) symbolically.
So we can find this from the state transition matrix \(\Phi\), which is known from to be \(M \Phi'(t) M^{-1}\).
syms t
Phi_p = expm(L*t)
Phi_p =
[ exp(t*(- 2 + 2i)), 0, 0]
[ 0, exp(t*(- 2 - 2i)), 0]
[ 0, 0, exp(-2*t)]
Now we can apply our transformation.
Phi = M*Phi_p*inv(M); % messy to print
d. Free response
Let’s compute the free response to some initial conditions. The free state response is given by \[\begin{aligned} \bm{x}(t) = \Phi(t) \bm{x}(0). \end{aligned}\]
So our symbolic solution is to multiply the initial conditions by this matrix.
x_0 = [0;0;1]; % initial conditions
x = Phi*x_0; % free response, symbolically
e. Plotting a free response
Let’s make the symbolic solution into something we can evaluate numerically and plot.
x_fun = matlabFunction(x);
Now let’s set up our time array for the plot.
t_a = linspace(0,4,300);
figure
plot(t_a,real(x_fun(t_a)))
xlabel('time (s)')
ylabel('state free response')
legend('x_1','x_2','x_3')
Problem 7.4 (LONELY)
Use a computer for this exercise. Let a system have the following state and output equation matrices: \[\begin{aligned} A = \begin{bmatrix} -1 & 0 & 8 \\ 0 & -2 & 0 \\ 0 & 0 & -3 \end{bmatrix} && B = \begin{bmatrix} 0 & 2 \\ 3 & 0 \\ 0 & 0 \end{bmatrix} && C = \begin{bmatrix} 1 & 0 & -1 \end{bmatrix} && D = \begin{bmatrix} 0 & 0 \end{bmatrix}. \end{aligned}\] For this system, answer the following imperatives.
Find the eigenvalue matrix \(\Lambda\) and comment on the stability of the system (justify your comment). Use the convention that \(\lambda_1 \ge \lambda_2 \ge \lambda_3\) and order \(\Lambda\) accordingly.
Find the eigenvectors and the modal matrix \(M\).
Find the state transition matrix \(\Phi(t)\). Hint: first find the “diagonalized” state transition matrix \(\Phi^\prime(t)\).
Let the input be \[\begin{aligned} \bm{u}(t) &= \begin{bmatrix} 4 \\ \sin(2\pi t) \end{bmatrix}. \end{aligned}\] Solve for the forced state response \(\bm{x}_{\text{fo}}(t)\). Express it simply—it’s not that bad.
Solve for the forced output response \(\bm{y}_{\text{fo}}(t)\). Express it simply—it’s not that bad.
Plot \(\bm{y}_{\text{fo}}(t)\) for \(t \in [0,7]\) sec.
clear; close all
Define the state-space matrices.
A = [-1,0,8;0,-2,0;0,0,-3];
B=[0,2;3,0;0,0];
C=[1,0,-1];
D=[0,0];
a and b Eigenvalue and modal matrices
Use eig
for the
eigendecomposition. The problem asks for the eigenvalues in the order
opposite that of Matlab’s default eig
order, so we flip them in L
and M
.
M,L] = eig(A) [
M =
1 0 -0.97014
0 1 0
0 0 0.24254
L =
-1 0 0
0 -2 0
0 0 -3
c State transition matrix
Proceed symbolically with the definition of the diagonalized basis state-transition matrix \(\Phi'(t)\).
syms t
Phi_p = @(t) diag(diag(exp(L*t)));
Phi_p(t)
ans =
[ exp(-t), 0, 0]
[ 0, exp(-2*t), 0]
[ 0, 0, exp(-3*t)]
Now transform bases to the original basis using \[\begin{aligned} \Phi(t) = M \Phi'(t) M^{-1}. \end{aligned}\]
M_inv = M^-1;
Phi = @(t) M*Phi_p(t)*M_inv;
Phi(t)
ans =
[ exp(-t), 0, 4*exp(-t) - 4*exp(-3*t)]
[ 0, exp(-2*t), 0]
[ 0, 0, exp(-3*t)]
d Forced state response
The forced state response is the second term of the state response solution.
syms T
u = @(t) [4;sin(2*pi*t)]; % input
x = @(t) int(Phi(t - T)*B*u(T),T,0,t); % integrate!
pretty(x(t))
/ (sin(2 pi t) - pi cos(2 pi t) 2) 2 4 pi exp(-t) \
| ---------------------------------- + ------------ |
| 2 2 |
| 4 pi + 1 4 pi + 1 |
| |
| 6 - exp(-2 t) 6 |
| |
\ 0 /
Written out somewhat more accessibly, \[\begin{aligned} \bm{x}(t) &= \left(\begin{array}{c} \frac{2\,\left(\sin\left(2\,\pi \,t\right)-2\,\pi \,\cos\left(2\,\pi \,t\right)\right)}{4\,\pi ^2+1}+\frac{4\,\pi \,{\mathrm{e}}^{-t}}{4\,\pi ^2+1}\\ 6-6\,{\mathrm{e}}^{-2\,t}\\ 0 \end{array}\right). \end{aligned}\]
e Forced output response
The state forced response is known, so the output response is just \[\begin{aligned} \bm{y}(t) &= C \bm{x} + D \bm{u}. \end{aligned}\]
y = @(t) C*x(t) + D*u(t);
y(t)
ans =
(2*(sin(2*pi*t) - 2*pi*cos(2*pi*t)))/(4*pi^2 + 1) + (4*pi*exp(-t))/(4*pi^2 + 1)
More readably, \[\begin{aligned} \bm{y}(t) &= \frac{2\,\left(\sin\left(2\,\pi \,t\right)-2\,\pi \,\cos\left(2\,\pi \,t\right)\right)}{4\,\pi ^2+1}+\frac{4\,\pi \,{\mathrm{e}}^{-t}}{4\,\pi ^2+1}. \end{aligned}\]
We might consider combining the \(\sin\) and \(\cos\) terms, which are truly a single sinusoid with amplitude and phase depending on their coefficients.
f Plotting the forced output response
Plot the forced output response, shown in .
y_fun = matlabFunction(y(t));
t_a = linspace(0,7,200);
figure;
plot(t_a,y_fun(t_a),'linewidth',1.5);
xlabel('time (s)')
ylabel('output forced response')
grid on
Problem 7.5 (ARTEMIS)
Use a computer for this exercise. Let a system have the following state and output equation matrices: \[\begin{aligned} A = \begin{bmatrix} -5 & 6 \\ 1 & -10 \end{bmatrix}, && B = \begin{bmatrix} 2 \\ 0 \end{bmatrix}, && C = \begin{bmatrix} 0 & 1 \end{bmatrix}, && D = \begin{bmatrix} 0 \end{bmatrix}. \end{aligned}\] For this system, answer the following imperatives.
Find the eigenvalue matrix \(\Lambda\) and comment on the stability of the system (justify your comment). Use the convention that \(\lambda_1 \ge \lambda_2\) and order \(\Lambda\) accordingly.
Find the eigenvectors and the modal matrix \(M\).
Find the state transition matrix \(\Phi(t)\). Hint: first find the “diagonalized” state transition matrix \(\Phi^\prime(t)\).
Let the input be \[\begin{aligned} \bm{u}(t) &= \begin{bmatrix} \delta(t) \end{bmatrix}, \end{aligned}\] where \(\delta\) is the Dirac delta impulse function.1 Solve for the forced state response \(\bm{x}_{\text{fo}}(t)\). Express it simply.2
Solve for the forced output response \(\bm{y}_{\text{fo}}(t)\). Express it simply.
Plot \(\bm{y}_{\text{fo}}(t)\) for \(t \in [0,3]\) sec.
clear; close all
Define the state-space matrices.
A = [-5,6;1,-10];
B = [2;0];
C = [0,1];
D = [0];
a and b Eigenvalue and modal matrices
Use eig
for the
eigendecomposition. The problem asks for the eigenvalues in the order
opposite that of Matlab’s default eig
order, so we flip them in L
and M
.
M,L] = eig(A);
[
disp('The eigenvalue matrix Lambda is:')
disp(L)
disp('The modal matrix M is:')
disp(M)
The eigenvalue matrix Lambda is:
-4 0
0 -11
The modal matrix M is:
0.98639 -0.70711
0.1644 0.70711
c State transition matrix
Proceed symbolically with the definition of the diagonalized basis state-transition matrix \(\Phi'(t)\).
syms t
Phip = @(t) diag(exp(diag(L)*t))
Now transform bases to the original basis using \[\begin{aligned} \Phi(t) = M \Phi'(t) M^{-1}. \end{aligned}\]
Phi = @(t) M*Phip(t)*M^-1
d Forced state response
The forced state response is the second term of the state response solution.
syms tau
u = @(t) [dirac(t)];
sympref('HeavisideAtOrigin',0); % consistent with RW
xfo = int(Phi(t-tau)*B*u(tau),tau,0,t);
assume(t > 0) % technically t >= 0, so we should check that x(0)=0
xfo = simplify(xfo,'steps',10);
Written out somewhat more accessibly, \[\begin{aligned} \bm{x}(t) &= \left(\begin{array}{c} \frac{2\,\left(\sin\left(2\,\pi \,t\right)-2\,\pi \,\cos\left(2\,\pi \,t\right)\right)}{4\,\pi ^2+1}+\frac{4\,\pi \,{\mathrm{e}}^{-t}}{4\,\pi ^2+1}\\ 6-6\,{\mathrm{e}}^{-2\,t}\\ 0 \end{array}\right). \end{aligned}\]
e Forced output response
The state forced response is known, so the output response is just \[\begin{aligned} \bm{y}(t) &= C \bm{x} + D \bm{u}. \end{aligned}\]
y_fo = C*xfo + D*u(t)
\(y_fo =\frac{2\,{\mathrm{e}}^{-11\,t} \,{\left({\mathrm{e}}^{7\,t} -1\right)}}{7}\)
f Plotting the forced output response
Plot the forced output response, shown in .
yfo_fun = matlabFunction(yfo);
tN = linspace(0,3,200);
yfoN = yfo_fun(tN);
figure
plot(tN,yfoN,'linewidth',2);
xlabel('time (s)')
ylabel('forced response y_{fo}(t)')
grid on
Problem 7.6 (LEVEL)
Use a computer for this exercise. Let a system have the following state and output equation matrices: \[\begin{aligned} A = \begin{bmatrix} -4 & -3 & 0 \\ 0 & -8 & 4 \\ 0 & 0 & -1 \end{bmatrix}, && B = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, && C = \begin{bmatrix} 0 & 1 & 0 \end{bmatrix}, && D = \begin{bmatrix} 0 \end{bmatrix}. \end{aligned}\] For this system, answer the following imperatives.
Find the eigenvalue matrix \(\Lambda\) and comment on the stability of the system (justify your comment).
Find the eigenvectors and the modal matrix \(M\).
Find the state transition matrix \(\Phi(t)\). Hint: first find the “diagonalized” state transition matrix \(\Phi^\prime(t)\).
Let the input be \[\begin{aligned} \bm{u}(t) &= \begin{bmatrix} u_s(t) \end{bmatrix}, \end{aligned}\] where \(u_s\) is the unit step function.3 Solve for the forced state response \(\bm{x}_{\text{fo}}(t)\). Express it simply.
Solve for the forced output response \(\bm{y}_{\text{fo}}(t)\). Express it simply.
Plot \(\bm{y}_{\text{fo}}(t)\) for \(t \in [0,5]\) sec.
Load Python packages
import numpy as np
import sympy as sp
import matplotlib.pyplot as plt
import dysys
from pprint import pprint
Define the System
Define a symbolic state-space matrix using the dysys
package as follows:
= [[-4, -3, 0], [0, -8, 4], [0, 0, -1]]
A = [[0], [1], [0]]
B = [[0, 1, 0]]
C = [[0]]
D = dysys.sss(A, B, C, D) # Create a symbolic state-space model sys
Eigenvalues and Stability
The eigenvalue matrix L
can be
found via the eig() method:
= sys.eig()
L, M print(f"Eigenvalues: {L.diagonal().tolist()}")
Eigenvalues: [[-8, -4, -1]]
The real parts of the eigenvalues are all negative; therefore, the system is asymptotically stable.
Eigenvectors and the Modal Matrix
The eigenvectors are stored in M
:
print(M)
Matrix([[3/4, 1, -4/7], [1, 0, 4/7], [0, 0, 1]])
State Transition Matrix
The state transition matrix \(\Phi(t)\) can be found as follows:
= sp.Symbol("t", nonnegative=True) ### Solution valid for t >= 0
t = sys.state_transition_matrix(t)
Phi pprint(Phi)
Matrix([
[exp(-4*t), -3*exp(-4*t)/4 + 3*exp(-8*t)/4, -4*exp(-t)/7 + exp(-4*t) - 3*exp(-8*t)/7],
[ 0, exp(-8*t), 4*exp(-t)/7 - 4*exp(-8*t)/7],
[ 0, 0, exp(-t)]])
Forced State Response
The forced state response for \(t \ge 0\) can be found as follows:
= sp.Heaviside(t)
u_s = sys.state_forced_response(t, u=u_s)
x_fo pprint(x_fo)
Matrix([
[-3/32 + 3*exp(-4*t)/16 - 3*exp(-8*t)/32],
[ 1/8 - exp(-8*t)/8],
[ 0]])
Forced Output Response
= sys.output_forced_response(t, u=u_s)
y_fo pprint(y_fo)
Matrix([[1/8 - exp(-8*t)/8]])
Plot the Forced Output Response
First, convert the symbolic expression to a NumPy function:
= sp.lambdify(t, y_fo, "numpy") y_fo_fun
Now create arrays to plot:
= np.linspace(0, 5, 101)
t_ = y_fo_fun(t_).flatten() y_fo_
Finally, plot:
= plt.subplots()
fig, ax
ax.plot(t_, y_fo_)"Time (s)")
ax.set_xlabel("Forced Output Response $y_\\text{fo}$")
ax.set_ylabel( plt.show()
In Python, we can define a symbolic unit step function using the
sympy.Heaviside()
function. Alternatively, we can set \(u_s(t)\) equal to \(1\) for integration over the interval \([0, t]\).↩︎Matlab’s
simplify
function may need some help. Use the ‘assume’ function.↩︎In Python, we can define a symbolic unit step function using the
sympy.Heaviside()
function. Alternatively, we can set \(u_s(t)\) equal to \(1\) for integration over the interval \([0, t]\).↩︎
Online Resources for Section 7.8
No online resources.