System Dynamics

Problems

Problem 7.1 (LARRY)

Let a system have the following state and output equation matrices: \[\begin{aligned} A = \begin{bmatrix} -3 & 0 \\ 1 & -2 \end{bmatrix} && B = \begin{bmatrix} 0 \\ 1 \end{bmatrix} && C = \begin{bmatrix} 0 & 1 \end{bmatrix} && D = \begin{bmatrix} 0 \end{bmatrix}. \end{aligned}\] For this system, answer the following imperatives.

  1. Find the eigenvalue matrix \(\Lambda\) and comment on the stability of the system (justify your comment). Use the convention that \(\lambda_1 \ge \lambda_2\) and order \(\Lambda\) accordingly.

  2. Find the eigenvectors and the modal matrix \(M\).

  3. Find the state transition matrix \(\Phi(t)\). Hint: first find the “diagonalized” state transition matrix \(\Phi^\prime(t)\).

  4. Using the state transition matrix, find the output free response for initial condition \[\begin{aligned} \bm{x}(0) = \begin{bmatrix} 1 \\ 0 \end{bmatrix}. \end{aligned}\]

a and b Eigenvalue and modal matrices

clear; close all

Define the state-space matrices.

A = [ ...
  -3, 0; ...
  1, -2 ...
];
B = [ ...
  0; ...
  1 ...
];
C = [0, 1];
D = [0];

Use eig for the eigendecomposition. The problem asks for the eigenvalues in the order opposite that of Matlab’s default eig order, so we flip them in L and M.

[M,L] = eig(A);
M = [M(:,2),M(:,1)]
L = diag(flip(diag(L)))
M =
      0.70711            0
     -0.70711            1
L =
    -3     0
     0    -2

c State transition matrix

Proceed symbolically with the definition of the diagonalized basis state-transition matrix \(\Phi'(t)\).

syms t
Phi_p = @(t) diag(diag(exp(L*t)));
Phi_p(t)
ans =
[ exp(-3*t),         0]
[         0, exp(-2*t)]

Now transform bases to the original basis using \[\begin{aligned} \Phi(t) = M \Phi'(t) M^{-1}. \end{aligned}\]

M_inv = M^-1;
Phi = @(t) M*Phi_p(t)*M_inv;
Phi(t)
ans =
[             exp(-3*t),         0]
[ exp(-2*t) - exp(-3*t), exp(-2*t)]

d Free output response

The free response for the output is the first term of the output response solution.

x0 = [1;0]; % initial condition
y = @(t) C*Phi(t)*x0;
y(t)
ans =
exp(-2*t) - exp(-3*t)

Plot the free output response, shown in .

y_fun = matlabFunction(y(t));
t_a = linspace(0,5,200);
figure;
plot(t_a,y_fun(t_a),'linewidth',1.5);
xlabel('time (s)')
ylabel('output response')
grid on

Problem 7.2 (MO)

Let a system have the following state and output equation matrices: \[\begin{aligned} A = \begin{bmatrix} -1 & 1 \\ 0 & -2 \end{bmatrix} && B = \begin{bmatrix} 1 \\ 0 \end{bmatrix} && C = \begin{bmatrix} 1 & 0 \end{bmatrix} && D = \begin{bmatrix} 0 \end{bmatrix}. \end{aligned}\] For this system, answer the following imperatives.

  1. Find the eigenvalue matrix \(\Lambda\) and comment on the stability of the system (justify your comment). Use the convention that \(\lambda_1 \le \lambda_2\) and order \(\Lambda\) accordingly.

  2. Find the eigenvectors and the modal matrix \(M\).

  3. Find the state transition matrix \(\Phi(t)\). Hint: first find the “diagonalized” state transition matrix \(\Phi^\prime(t)\).

  4. Using the state transition matrix, find the output homogeneous solution for initial condition \[\begin{aligned} \bm{x}(0) = \begin{bmatrix} 0 \\ 1 \end{bmatrix}. \end{aligned}\]

  1. By recognizing that \(A\) is triangular, we identify its eigenvalues to be \(\lambda_{1,2} = -2,-1\). Therefore, the eigenvalue matrix is \[\begin{aligned} \Lambda = \begin{bmatrix} -2 & 0 \\ 0 & -1 \end{bmatrix}. \end{aligned}\] The system is stable because \(\Re{\lambda_i} < 0\) for all \(i\).

  2. The eigenvectors are solutions to \[\begin{aligned} \bm{0} &= (\lambda_i I - A)\bm{m}_i \\ &= \left( \begin{bmatrix} \lambda_i & 0 \\ 0 & \lambda_i \end{bmatrix} - \begin{bmatrix} -1 & 1 \\ 0 & -2 \end{bmatrix} \right) \bm{m}_i \\ &= \begin{bmatrix} \lambda_i+1 & -1 \\ 0 & \lambda_i+2 \end{bmatrix} \bm{m}_i. \end{aligned}\] For \(\lambda_1 = -2\) and some constant \(\alpha\), \[\begin{aligned} \bm{0} &= \begin{bmatrix} -1 & -1 \\ 0 & 0 \end{bmatrix} \bm{m}_1 \\ &\Rightarrow \bm{m}_1 = \alpha \begin{bmatrix} 1 \\ -1 \end{bmatrix}. \end{aligned}\] For \(\lambda_2 = -1\) and some constant \(\beta\), \[\begin{aligned} \bm{0} &= \begin{bmatrix} 0 & -1 \\ 0 & 1 \end{bmatrix} \bm{m}_2 \\ &\Rightarrow \bm{m}_2 = \beta \begin{bmatrix} 1 \\ 0 \end{bmatrix}. \end{aligned}\] So the modal matrix is \[\begin{aligned} M &= \begin{bmatrix} \bm{m}_1 & | & \bm{m}_2 \end{bmatrix} \\ &= \begin{bmatrix} 1 & 1 \\ -1 & 0 \end{bmatrix}. \end{aligned}\]

  3. The primed-basis state transition matrix is \[\begin{aligned} \Phi'(t) &= e^{\Lambda t} \\ &= \begin{bmatrix} e^{\lambda_1 t} & 0 \\ 0 & e^{\lambda_2 t} \end{bmatrix}\\ &= \begin{bmatrix} e^{-2 t} & 0 \\ 0 & e^{-t} \end{bmatrix}. \end{aligned}\] Transforming this to the original basis with the modal matrix, \[\begin{aligned} \Phi(t) &= M \Phi'(t) M^{-1} \\ &= \begin{bmatrix} 1 & 1 \\ -1 & 0 \end{bmatrix} \begin{bmatrix} e^{-2 t} & 0 \\ 0 & e^{-t} \end{bmatrix} \begin{bmatrix} 0 & -1 \\ 1 & 1 \end{bmatrix}/(1\cdot0 - 1\cdot(-1))\\ &= \begin{bmatrix} e^{-2 t} & e^{-t} \\ -e^{-2 t} & 0 \end{bmatrix} \begin{bmatrix} 0 & -1 \\ 1 & 1 \end{bmatrix} \\ &= \begin{bmatrix} e^{-t} & e^{-t} - e^{-2t} \\ 0 & e^{-2t} \end{bmatrix} \end{aligned}\]

  4. The homogeneous output solution is \[\begin{aligned} y_h(t) &= C \bm{x}_\text{h}(t) \\ &= C \Phi(t) \bm{x}(0) \\ &= \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} e^{-t} & e^{-t} - e^{-2t} \\ 0 & e^{-2t} \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} \\ &= e^{-t} - e^{-2t}. \end{aligned}\]

Problem 7.3 (CURLY)

Use a computer for this exercise. Let a system have the following state \(A\)-matrix: \[\begin{aligned} A = \begin{bmatrix} -2 & 2 & 0 \\ -1 & -2 & 2 \\ 0 & -1 & -2 \end{bmatrix}. \end{aligned}\] For this system, answer the following imperatives.

  1. Find the eigenvalue matrix \(\Lambda\) and modal matrix \(M\).

  2. Comment on the stability of the system (justify your comment).

  3. Find the diagonalized state transition matrix \(\Phi'(t)\). Be sure to print the expression. Furthermore, find the state transition matrix \(\Phi(t)\).

  4. Using the state transition matrix, find the state free response for initial condition \[\begin{aligned} \bm{x}(0) = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}. \end{aligned}\] Do not print this expression.

  5. Plot the free response found above for \(t \in [0,4]\) seconds.

Begin by defining the \(A\) matrix.

A = [...
  -2, 2, 0;...
  -1, -2, 2;...
  0, -1, -2 ...
];

a. Eigendecomposition

The eigendecomposition is performed using the eig function.

[M,L] = eig(A)
M =

   0.6667 + 0.0000i   0.6667 + 0.0000i   0.8944 + 0.0000i
  -0.0000 + 0.6667i  -0.0000 - 0.6667i   0.0000 + 0.0000i
  -0.3333 - 0.0000i  -0.3333 + 0.0000i   0.4472 + 0.0000i


L =

  -2.0000 + 2.0000i   0.0000 + 0.0000i   0.0000 + 0.0000i
   0.0000 + 0.0000i  -2.0000 - 2.0000i   0.0000 + 0.0000i
   0.0000 + 0.0000i   0.0000 + 0.0000i  -2.0000 + 0.0000i

Let’s take a closer look at the eigenvalues.

disp(diag(L))
  -2.0000 + 2.0000i
  -2.0000 - 2.0000i
  -2.0000 + 0.0000i

b. Stability and character of response

All three eigenvalues have negative real parts; therefore, the system is stable. There is a single pair of complex conjugate eigenvalues, which will cause the system to oscillate while decaying. The real eigenvalue will contribute a real exponential decay with the same rate as the oscillating pair.

c. State transition matrices

First, we construct \(\Phi'\) symbolically.

So we can find this from the state transition matrix \(\Phi\), which is known from to be \(M \Phi'(t) M^{-1}\).

syms t
Phi_p = expm(L*t)
Phi_p =
 
[ exp(t*(- 2 + 2i)),                 0,         0]
[                 0, exp(t*(- 2 - 2i)),         0]
[                 0,                 0, exp(-2*t)]
 

Now we can apply our transformation.

Phi = M*Phi_p*inv(M); % messy to print

d. Free response

Let’s compute the free response to some initial conditions. The free state response is given by \[\begin{aligned} \bm{x}(t) = \Phi(t) \bm{x}(0). \end{aligned}\]

So our symbolic solution is to multiply the initial conditions by this matrix.

x_0 = [0;0;1]; % initial conditions
x = Phi*x_0; % free response, symbolically

e. Plotting a free response

Let’s make the symbolic solution into something we can evaluate numerically and plot.

x_fun = matlabFunction(x);

Now let’s set up our time array for the plot.

t_a = linspace(0,4,300);
figure
plot(t_a,real(x_fun(t_a)))
xlabel('time (s)')
ylabel('state free response')
legend('x_1','x_2','x_3')

Problem 7.4 (LONELY)

Use a computer for this exercise. Let a system have the following state and output equation matrices: \[\begin{aligned} A = \begin{bmatrix} -1 & 0 & 8 \\ 0 & -2 & 0 \\ 0 & 0 & -3 \end{bmatrix} && B = \begin{bmatrix} 0 & 2 \\ 3 & 0 \\ 0 & 0 \end{bmatrix} && C = \begin{bmatrix} 1 & 0 & -1 \end{bmatrix} && D = \begin{bmatrix} 0 & 0 \end{bmatrix}. \end{aligned}\] For this system, answer the following imperatives.

  1. Find the eigenvalue matrix \(\Lambda\) and comment on the stability of the system (justify your comment). Use the convention that \(\lambda_1 \ge \lambda_2 \ge \lambda_3\) and order \(\Lambda\) accordingly.

  2. Find the eigenvectors and the modal matrix \(M\).

  3. Find the state transition matrix \(\Phi(t)\). Hint: first find the “diagonalized” state transition matrix \(\Phi^\prime(t)\).

  4. Let the input be \[\begin{aligned} \bm{u}(t) &= \begin{bmatrix} 4 \\ \sin(2\pi t) \end{bmatrix}. \end{aligned}\] Solve for the forced state response \(\bm{x}_{\text{fo}}(t)\). Express it simply—it’s not that bad.

  5. Solve for the forced output response \(\bm{y}_{\text{fo}}(t)\). Express it simply—it’s not that bad.

  6. Plot \(\bm{y}_{\text{fo}}(t)\) for \(t \in [0,7]\) sec.

clear; close all

Define the state-space matrices.

A = [-1,0,8;0,-2,0;0,0,-3];
B=[0,2;3,0;0,0];
C=[1,0,-1];
D=[0,0];

a and b Eigenvalue and modal matrices

Use eig for the eigendecomposition. The problem asks for the eigenvalues in the order opposite that of Matlab’s default eig order, so we flip them in L and M.

[M,L] = eig(A)
M =
            1            0     -0.97014
            0            1            0
            0            0      0.24254
L =
    -1     0     0
     0    -2     0
     0     0    -3

c State transition matrix

Proceed symbolically with the definition of the diagonalized basis state-transition matrix \(\Phi'(t)\).

syms t
Phi_p = @(t) diag(diag(exp(L*t)));
Phi_p(t)
ans =
[ exp(-t),         0,         0]
[       0, exp(-2*t),         0]
[       0,         0, exp(-3*t)]

Now transform bases to the original basis using \[\begin{aligned} \Phi(t) = M \Phi'(t) M^{-1}. \end{aligned}\]

M_inv = M^-1;
Phi = @(t) M*Phi_p(t)*M_inv;
Phi(t)
ans =
[ exp(-t),         0, 4*exp(-t) - 4*exp(-3*t)]
[       0, exp(-2*t),                       0]
[       0,         0,               exp(-3*t)]

d Forced state response

The forced state response is the second term of the state response solution.

syms T
u = @(t) [4;sin(2*pi*t)]; % input
x = @(t) int(Phi(t - T)*B*u(T),T,0,t); % integrate!
pretty(x(t))
/ (sin(2 pi t) - pi cos(2 pi t) 2) 2   4 pi exp(-t) \
| ---------------------------------- + ------------ |
|                  2                         2      |
|              4 pi  + 1                 4 pi  + 1  |
|                                                   |
|                  6 - exp(-2 t) 6                  |
|                                                   |
\                         0                         /

Written out somewhat more accessibly, \[\begin{aligned} \bm{x}(t) &= \left(\begin{array}{c} \frac{2\,\left(\sin\left(2\,\pi \,t\right)-2\,\pi \,\cos\left(2\,\pi \,t\right)\right)}{4\,\pi ^2+1}+\frac{4\,\pi \,{\mathrm{e}}^{-t}}{4\,\pi ^2+1}\\ 6-6\,{\mathrm{e}}^{-2\,t}\\ 0 \end{array}\right). \end{aligned}\]

e Forced output response

The state forced response is known, so the output response is just \[\begin{aligned} \bm{y}(t) &= C \bm{x} + D \bm{u}. \end{aligned}\]

y = @(t) C*x(t) + D*u(t);
y(t)
ans =
(2*(sin(2*pi*t) - 2*pi*cos(2*pi*t)))/(4*pi^2 + 1) + (4*pi*exp(-t))/(4*pi^2 + 1)

More readably, \[\begin{aligned} \bm{y}(t) &= \frac{2\,\left(\sin\left(2\,\pi \,t\right)-2\,\pi \,\cos\left(2\,\pi \,t\right)\right)}{4\,\pi ^2+1}+\frac{4\,\pi \,{\mathrm{e}}^{-t}}{4\,\pi ^2+1}. \end{aligned}\]

We might consider combining the \(\sin\) and \(\cos\) terms, which are truly a single sinusoid with amplitude and phase depending on their coefficients.

f Plotting the forced output response

Plot the forced output response, shown in .

y_fun = matlabFunction(y(t));
t_a = linspace(0,7,200);
figure;
plot(t_a,y_fun(t_a),'linewidth',1.5);
xlabel('time (s)')
ylabel('output forced response')
grid on

Problem 7.5 (ARTEMIS)

Use a computer for this exercise. Let a system have the following state and output equation matrices: \[\begin{aligned} A = \begin{bmatrix} -5 & 6 \\ 1 & -10 \end{bmatrix}, && B = \begin{bmatrix} 2 \\ 0 \end{bmatrix}, && C = \begin{bmatrix} 0 & 1 \end{bmatrix}, && D = \begin{bmatrix} 0 \end{bmatrix}. \end{aligned}\] For this system, answer the following imperatives.

  1. Find the eigenvalue matrix \(\Lambda\) and comment on the stability of the system (justify your comment). Use the convention that \(\lambda_1 \ge \lambda_2\) and order \(\Lambda\) accordingly.

  2. Find the eigenvectors and the modal matrix \(M\).

  3. Find the state transition matrix \(\Phi(t)\). Hint: first find the “diagonalized” state transition matrix \(\Phi^\prime(t)\).

  4. Let the input be \[\begin{aligned} \bm{u}(t) &= \begin{bmatrix} \delta(t) \end{bmatrix}, \end{aligned}\] where \(\delta\) is the Dirac delta impulse function.1 Solve for the forced state response \(\bm{x}_{\text{fo}}(t)\). Express it simply.2

  5. Solve for the forced output response \(\bm{y}_{\text{fo}}(t)\). Express it simply.

  6. Plot \(\bm{y}_{\text{fo}}(t)\) for \(t \in [0,3]\) sec.

clear; close all

Define the state-space matrices.

A = [-5,6;1,-10];
B = [2;0];
C = [0,1];
D = [0];

a and b Eigenvalue and modal matrices

Use eig for the eigendecomposition. The problem asks for the eigenvalues in the order opposite that of Matlab’s default eig order, so we flip them in L and M.

[M,L] = eig(A);

disp('The eigenvalue matrix Lambda is:')
disp(L)
disp('The modal matrix M is:')
disp(M)
The eigenvalue matrix Lambda is:
    -4     0
     0   -11
The modal matrix M is:
      0.98639     -0.70711
       0.1644      0.70711

c State transition matrix

Proceed symbolically with the definition of the diagonalized basis state-transition matrix \(\Phi'(t)\).

syms t
Phip = @(t) diag(exp(diag(L)*t))

Now transform bases to the original basis using \[\begin{aligned} \Phi(t) = M \Phi'(t) M^{-1}. \end{aligned}\]

Phi = @(t) M*Phip(t)*M^-1

d Forced state response

The forced state response is the second term of the state response solution.

syms tau

u = @(t) [dirac(t)];
sympref('HeavisideAtOrigin',0); % consistent with RW

xfo = int(Phi(t-tau)*B*u(tau),tau,0,t);
assume(t > 0) % technically t >= 0, so we should check that x(0)=0
xfo = simplify(xfo,'steps',10);

Written out somewhat more accessibly, \[\begin{aligned} \bm{x}(t) &= \left(\begin{array}{c} \frac{2\,\left(\sin\left(2\,\pi \,t\right)-2\,\pi \,\cos\left(2\,\pi \,t\right)\right)}{4\,\pi ^2+1}+\frac{4\,\pi \,{\mathrm{e}}^{-t}}{4\,\pi ^2+1}\\ 6-6\,{\mathrm{e}}^{-2\,t}\\ 0 \end{array}\right). \end{aligned}\]

e Forced output response

The state forced response is known, so the output response is just \[\begin{aligned} \bm{y}(t) &= C \bm{x} + D \bm{u}. \end{aligned}\]

y_fo = C*xfo + D*u(t)

\(y_fo =\frac{2\,{\mathrm{e}}^{-11\,t} \,{\left({\mathrm{e}}^{7\,t} -1\right)}}{7}\)

f Plotting the forced output response

Plot the forced output response, shown in .

yfo_fun = matlabFunction(yfo);
tN = linspace(0,3,200);
yfoN = yfo_fun(tN);
figure
plot(tN,yfoN,'linewidth',2);
xlabel('time (s)')
ylabel('forced response y_{fo}(t)')
grid on

Problem 7.6 (LEVEL)

Use a computer for this exercise. Let a system have the following state and output equation matrices: \[\begin{aligned} A = \begin{bmatrix} -4 & -3 & 0 \\ 0 & -8 & 4 \\ 0 & 0 & -1 \end{bmatrix}, && B = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, && C = \begin{bmatrix} 0 & 1 & 0 \end{bmatrix}, && D = \begin{bmatrix} 0 \end{bmatrix}. \end{aligned}\] For this system, answer the following imperatives.

  1. Find the eigenvalue matrix \(\Lambda\) and comment on the stability of the system (justify your comment).

  2. Find the eigenvectors and the modal matrix \(M\).

  3. Find the state transition matrix \(\Phi(t)\). Hint: first find the “diagonalized” state transition matrix \(\Phi^\prime(t)\).

  4. Let the input be \[\begin{aligned} \bm{u}(t) &= \begin{bmatrix} u_s(t) \end{bmatrix}, \end{aligned}\] where \(u_s\) is the unit step function.3 Solve for the forced state response \(\bm{x}_{\text{fo}}(t)\). Express it simply.

  5. Solve for the forced output response \(\bm{y}_{\text{fo}}(t)\). Express it simply.

  6. Plot \(\bm{y}_{\text{fo}}(t)\) for \(t \in [0,5]\) sec.

Load Python packages

import numpy as np
import sympy as sp
import matplotlib.pyplot as plt
import dysys
from pprint import pprint

Define the System

Define a symbolic state-space matrix using the dysys package as follows:

A = [[-4, -3, 0], [0, -8, 4], [0, 0, -1]]
B = [[0], [1], [0]]
C = [[0, 1, 0]]
D = [[0]]
sys = dysys.sss(A, B, C, D)  # Create a symbolic state-space model

Eigenvalues and Stability

The eigenvalue matrix L can be found via the eig() method:

L, M = sys.eig()
print(f"Eigenvalues: {L.diagonal().tolist()}")
Eigenvalues: [[-8, -4, -1]]

The real parts of the eigenvalues are all negative; therefore, the system is asymptotically stable.

Eigenvectors and the Modal Matrix

The eigenvectors are stored in M:

print(M)
Matrix([[3/4, 1, -4/7], [1, 0, 4/7], [0, 0, 1]])

State Transition Matrix

The state transition matrix \(\Phi(t)\) can be found as follows:

t = sp.Symbol("t", nonnegative=True)  ### Solution valid for t >= 0
Phi = sys.state_transition_matrix(t)
pprint(Phi)
Matrix([
[exp(-4*t), -3*exp(-4*t)/4 + 3*exp(-8*t)/4, -4*exp(-t)/7 + exp(-4*t) - 3*exp(-8*t)/7],
[        0,                      exp(-8*t),              4*exp(-t)/7 - 4*exp(-8*t)/7],
[        0,                              0,                                  exp(-t)]])

Forced State Response

The forced state response for \(t \ge 0\) can be found as follows:

u_s = sp.Heaviside(t)
x_fo = sys.state_forced_response(t, u=u_s)
pprint(x_fo)
Matrix([
[-3/32 + 3*exp(-4*t)/16 - 3*exp(-8*t)/32],
[                      1/8 - exp(-8*t)/8],
[                                      0]])

Forced Output Response

y_fo = sys.output_forced_response(t, u=u_s)
pprint(y_fo)
Matrix([[1/8 - exp(-8*t)/8]])

Plot the Forced Output Response

First, convert the symbolic expression to a NumPy function:

y_fo_fun = sp.lambdify(t, y_fo, "numpy")

Now create arrays to plot:

t_ = np.linspace(0, 5, 101)
y_fo_ = y_fo_fun(t_).flatten()

Finally, plot:

fig, ax = plt.subplots()
ax.plot(t_, y_fo_)
ax.set_xlabel("Time (s)")
ax.set_ylabel("Forced Output Response $y_\\text{fo}$")
plt.show()


  1. In Python, we can define a symbolic unit step function using the sympy.Heaviside() function. Alternatively, we can set \(u_s(t)\) equal to \(1\) for integration over the interval \([0, t]\).↩︎

  2. Matlab’s simplify function may need some help. Use the ‘assume’ function.↩︎

  3. In Python, we can define a symbolic unit step function using the sympy.Heaviside() function. Alternatively, we can set \(u_s(t)\) equal to \(1\) for integration over the interval \([0, t]\).↩︎

Online Resources for Section 7.8

No online resources.