Analytic and numerical output response example in Matlab
In the following example, we explore the output response derived both analytically and numerically in Matlab.
Consider a state-space model with the following standard matrices.
A = [...
-1, 3, 5, 7;...
0, -2, 0, 6;...
-2, 1, -3, 0;...
0, 1, 3, -4;...
;
]n = length(A); % order
B = [...
0; 1; 0; 2; ...
;
]C = eye(n);
D = zeros([n,1]);
Solve for the unit step response output y given the following initial condition.
x0 = [2;0;2;0];
Analytic solution
We use the solution of : $$\begin{aligned} \bm{y}(t) &= C \Phi(t) \bm{x}(0) + C \int_0^t \Phi(t-\tau) B \bm{u}(\tau) d\tau + D \bm{u}(t). \end{aligned}$$
First we need Φ(t). The “primed” basis requires the eigendecomposition.
M,L] = eig(A); [
We can find Φ from the primed-basis version Φ′, which is easy to compute.
Phi_p = @(t) diag(diag(exp(L*t)));
Now the basis transformation.
M_inv = M^-1; % compute just once, not on every call
Phi = @(t) M*Phi_p(t)*M_inv;
Declare symbolic variables.
syms T tt
Apply .
y_sym = C*Phi(tt)*x0 + C*int(Phi(tt-T)*B*1,T,0,tt) + D*1;
Convert this to a numerically evaluable function.
y_num = matlabFunction(y_sym);
Plot it; the result is shown in .
figure
t_num = linspace(0,8,200);
plot(t_num,y_num(t_num),'linewidth',1)
xlabel('time (s)')
ylabel('analytic output response')
legend('y_1','y_2','y_3','y_4')
Numerical solution
sys = ss(A,B,C,D);
Using
lsim
First, use lsim
to compute the
response numerically.
u_s = ones(size(t_num)); % a one for every time
y_lsim = lsim(sys,u_s,t_num,x0); % simulate
Now plot it; the result is shown in .
figure
plot(t_num,y_lsim,'linewidth',1)
xlabel('time (s)')
ylabel('numerical output response')
legend('y_1','y_2','y_3','y_4')
hgsave(h,'figures/temp');
Now take the difference between the two solutions and plot the error. As shows, the differences are minimal.
figure
plot(t_num,y_lsim-y_num(t_num).','linewidth',1)
xlabel('time (s)')
ylabel('error in output response')
legend('y_1','y_2','y_3','y_4')
Using the
step
and initial
commands with superposition
Just for fun, here’s how we could use step
and initial
(instead of lsim
) with superposition to numerically
solve.
y_step = step(sys,t_num); % forced response
y_initial = initial(sys,x0,t_num); % free response
y_total = y_initial + y_step; % (superposition)
Online Resources for Section 7.6
No online resources.