System Dynamics

State-space model of a translational mechanical system

Let’s try an example of a higher-order translational mechanical system.

Example 3.3

For the translational mechanical system shown, find a state-space model with outputs the spring forces and mass momenta.

0. Linear graph model. Assigning the coordinate arrow in the direction of Vs, we obtain the linear graph shown.

1a. The normal tree is shown on the linear graph.

1b.

Primary variables: Vs, vm1, vm2, fk1, fk2, fB1, fB2.
Secondary variables: Fs, fm1, fm2, vk1, vk2, vB1, vB2.

1c. State variables: vm1, vm2, fk1, fk2 (system order n = 4).

1d. State, input, and output vectors: $$\begin{aligned} \bm{x} = \begin{bmatrix} v_{m_1}\\v_{m_2}\\f_{k_1}\\f_{k_2} \end{bmatrix} \qquad \bm{u} = \begin{bmatrix} V_s \end{bmatrix} \qquad \bm{y} = \begin{bmatrix} f_{k_1}\\f_{k_2}\\p_{m_1}\\p_{m_2} \end{bmatrix}. \end{aligned}$$

1e. Elemental equations.

m1 $\dot{v}_{m_1} = \frac{1} {m_1} f_{m_1}$
m2 $\dot{v}_{m_2} = \frac{1} {m_2} f_{m_2}$
k1 k1 = k1vk1
k2 k2 = k2vk2
B1 fB1 = B1vB1
B2 fB2 = B2vB2

1f. Continuity equations.

Branch Equation
m1 (con1) fm1 = fk1 + fB1 − fk2 − fB2
m2 (con2) fm2 = fk2 + fB2

1f. Compatibility equations.

Link Equation
k1 vk1 = Vs − vm1
B1 vB1 = Vs − vm1
k2 vk2 = vm1 − vm2
B2 vB2 = vm1 − vm2

2a. Eliminate secondary variables from the elemental equations.

m1 $\dot{v}_{m_1} = \frac{1} {m_1} (f_{k_1} + f_{B_1} - f_{k_2} - f_{B_2})$
m2 $\dot{v}_{m_2} = \frac{1} {m_2} (f_{k_2} + f_{B_2})$
k1 k1 = k1(Vsvm1)
k2 k2 = k2(vm1vm2)
B1 fB1 = B1(Vsvm1)
B2 fB2 = B2(vm1vm2)

2b. Eliminate non-state and non-input variables from the elemental equations. In this case, fB1 and fB2 are the only variables remaining to eliminate, and they are already expressed as state- and input-variables!

2c. Write the state equation in standard form $$\begin{aligned} \bm{\dot{x}} &= \begin{bmatrix} -(B_1+B_2)/m_1 & B_2/m_1 & 1/m_1 & -1/m_1 \\ B_2/m_2 & -B_2/m_2 & 0 & 1/m_2 \\ -k_1 & 0 & 0 & 0 \\ k_2 & -k_2 & 0 & 0 \end{bmatrix} \begin{bmatrix} v_{m_1}\\v_{m_2}\\f_{k_1}\\f_{k_2} \end{bmatrix} + \begin{bmatrix} B_1/m_1 \\ 0 \\ k_1 \\ 0 \end{bmatrix} \begin{bmatrix} V_s \end{bmatrix}. \end{aligned}$$

2d. Outputs in terms of states and inputs. $$\begin{aligned} f_{k_1} = f_{k_1} && f_{k_2} = f_{k_2} && p_{m_1} = m_1 v_{m_1} && p_{m_2} = m_2 v_{m_2}. \end{aligned}$$

2e. Output in standard form. $$\begin{aligned} \bm{y} &= \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ m_1 & 0 & 0 & 0 \\ 0 & m_2 & 0 & 0 \end{bmatrix} \begin{bmatrix} v_{m_1}\\v_{m_2}\\f_{k_1}\\f_{k_2} \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} V_s \end{bmatrix}. \end{aligned}$$

Online Resources for Section 3.5

No online resources.