Problems
Problem 9.1 (STANISLAW)
Explain, in your own words (supplementary drawings are ok), what the frequency domain is, how we derive models in it, and why it is useful.
The frequency domain is the representation of a signal or a system in terms of its frequency components or reactions thereto. Typically, a frequency domain system model—most commonly a frequency response function—is developed from a transfer function model or a Fourier transform. A signal can be represented in the frequency domain as a Fourier series or as a Fourier transform. The frequency domain gives us a way of analyzing and designing systems that is especially powerful for periodic system inputs.
Problem 9.2 (PUG)
Consider the function \[\begin{aligned} f(t) = 8 \cos(t) + 6 \sin(2 t) + \sqrt{5} \cos(4 t) + 2 \sin(4 t) + \cos(6 t - \pi/2). \end{aligned}\] (a) Find the (harmonic) magnitude and (harmonic) phase of its Fourier series components. (b) Sketch its magnitude and phase spectra. Hint: no Fourier integrals are necessary to solve this problem.
Problem 9.3 (PONYO)
Consider the function with \(a>0\) \[\begin{aligned} f(t) = e^{-a|t|}. \end{aligned}\] From the transform definition, derive the Fourier transform \(F(\omega)\) of \(f(t)\). Simplify the result such that it is clear the expression is real (no imaginary component).
The following solution uses MATLAB.
clear; close all
syms t a w
assume(a > 0);
assume(t,'real');
assume(w,'real');
Define an expression for the function \(f(t)\) we are transforming as
f = exp(-a*abs(t));
Apply the definition of the Fourier transform:
F = int(f*exp(-i*w*t),t,-Inf,Inf)
\(F =\frac{2\,a}{a^2 +w^2 }\)
Problem 9.4 (SEESAW)
Consider the periodic function \(f:\mathbb{R}\rightarrow\mathbb{R}\) with period \(T\) defined for one period as \[\begin{aligned} f(t) = a t \quad\text{for } t \in (-T/2,T/2] \end{aligned}\] where \(a, T \in \mathbb{R}\). Perform a fourier series analysis on \(f\). Letting \(a = 5\) and \(T = 1\), plot \(f\) along with the partial sum of the fourier series synthesis, the first \(50\) nonzero components, over \(t \in [-T,T]\).
Matlab solution
Fourier series analysis
Let’s perform both a complex and a trigonometric Fourier series analysis.
Complex Fourier coefficients
Define symbolic variables and assumptions.
syms a t T w_n n
assume(a,'real')
assume(t,'real')
assume(T>0)
assume(w_n,'real')
assume(n,{'real','integer'})
Define the natural frequency w_n
and a symbolic expression for the function we’re analyzing over the
period -T/2
to T/2
.
w_n = 2*pi*n/T; % natural frequency
fT = a*t; % function over integration interval
Compute the complex Fourier coefficients.
c_n = simplify(...
1/T*int(fT*exp(-i*w_n*t),t,-T/2,T/2)...
)
\(c_n =\frac^n \,T\,a\,\mathrm{i}}{2\,n\,\pi }\)
Trigonometric Fourier coefficients
The trigonometric Fourier coefficients have a different range for the index (postitive).
syms N w_N
assume(N,{'positive','integer'})
w_N = 2*pi*N/T;
The trigonometric fourier coefficients are
a_0 = 2/T*int(fT,t,-T/2,T/2)
a_n = 2/T*int(fT*cos(w_N*t),t,-T/2,T/2)
b_n = simplify(...
2/T*int(fT*sin(w_N*t),t,-T/2,T/2)...
)
\(a_0 =0\)
\(a_n =0\)
\(b_n =\frac^{N+1} \,T\,a}{N\,\pi }\)
As we expect with an odd function, the \(a_n\) coefficients are zero.
Fourier series synthesis
The complex synthesis terms are
f_n = @(n_) subs(c_n*exp(i*w_n*t),n,n_);
The trigonometric synthesis terms are
f_N = @(N_) subs(a_n*cos(w_N*t)+b_n*sin(w_N*t),N,N_);
The complex synthesis partial sum is
nmax = 50;
Sf_n = 0;
for k = 1:nmax
Sf_n = Sf_n + f_n(k) + f_n(-k);
end
The trigonometric series partial sum is
Sf_N = 0;
for k = 1:nmax
Sf_N = Sf_N + f_N(k);
end
Convert complex and trigonometric partial sums to matlabFunction
s.
params.a = 5;
params.T = 1;
Sf_n_ = matlabFunction(subs(Sf_n,params));
Sf_N_ = matlabFunction(subs(Sf_N,params));
Plot complex partial sum and \(f(t)\)
Create mod
ded \(f(t)\):
T_ = subs(T,params); % T_ is a numerical T
f = @(t_) subs(subs(fT,params),t,mod(t_-T_/2,T_)-T_/2); % mod magic
f_ = matlabFunction(f(t));
Plot complex partial sum and \(f(t)\)
ta = linspace(-T_,T_,301);
Sf_n_a = Sf_n_(ta); % compute once (re-using to check imag components)
figure;
plot(ta,f_(ta),'b','linewidth',1.5); hold on
plot(ta,Sf_n_a,'linewidth',1.5)
xlabel('time (s)')
ylabel('f(t)')
Check that the imaginary parts are, in fact, small.
max(imag(Sf_n_a))
\(ans =0\)
Plot trigonometric partial sum and \(f(t)\)
figure
plot(ta,f_(ta),'b','linewidth',1.5); hold on
plot(ta,Sf_N_(ta),'linewidth',1.5)
xlabel('time (s)')
ylabel('f(t)')
We see that both the complex () and the trigonometric () Fourier synthesies partial sums are good and equivalent approximations of \(f(t)\).
Python solution
import sympy as sp
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.ticker import MaxNLocator
from IPython.display import display, Markdown, Latex
Define symbolic variables.
't omega_n a T n',real=True); sp.var(
Fourier analysis
The fourier analysis should be of the series variety because the function in question is periodic.
= {omega_n: 2*sp.pi*n/T}
sym_dict = sp.integrate(a*t*sp.exp(-1j*omega_n*t),(t,-T/2,T/2))
cn display(cn.rewrite(sp.cos).simplify())
\(\displaystyle \begin{cases} \frac{1.0 i a \left(1.0 T \omega_{n} \cos{\left(0.5 T \omega_{n} \right)} - 2.0 \sin{\left(0.5 T \omega_{n} \right)}\right)}{\omega_{n}^{2}} & \text{for}\: \omega_{n} \neq 0 \\0 & \text{otherwise} \end{cases}\)
= sp.lambdify((n,a,T),cn.subs(sym_dict)) cn_num
Line spectrum
Let a
and T
be specific numbers and plot a line
spectrum.
= 1
a_num = 3
T_num = 10
n_terms = np.concatenate(
n_array =-n_terms,stop=0,step=1),
(np.arange(start=1,stop=n_terms+1,step=1))
np.arange(start
)= cn_num(n_array,a_num,T_num)
cn_array = abs(cn_array)
Mn_array = np.angle(cn_array) Pn_array
= plt.subplots()
fig, ax =True)
plt.stem(n_array,Mn_array,use_line_collection0],[0],use_line_collection=True) # add n=0 harmonic
plt.stem([=True))
ax.xaxis.set_major_locator(MaxNLocator(integer'harmonic $n$')
plt.xlabel('harmonic amplitude'); plt.ylabel(
= plt.subplots()
fig, ax =True)
plt.stem(n_array,Pn_array,use_line_collection=True))
ax.xaxis.set_major_locator(MaxNLocator(integer'harmonic $n$')
plt.xlabel('harmonic phase (rad)'); plt.ylabel(
Partial sum
We are to sum the first 50 nonzero components of the fourier synthesis. With the complex representation, that means positive and negative harmonics.
= 50
n_sum = 5
a_num = 1
T_num = np.linspace(-T_num,T_num,500)
t_array = np.concatenate(
n_array =-n_sum,stop=0,step=1),
(np.arange(start=1,stop=n_sum+1,step=1))
np.arange(start
)= cn_num(n_array,a_num,T_num) cn_array
The cn_array
is an array of the
first 50 \(c_n\) components (plus and
minus). These need to be each multiplied by the imaginary exponential
term and summed. These can be performed by a dot product; however, we
also need to evaluate the function at each time value in t_array
so we can plot. We proceed by
first constructing en_array
, which
has the exponential components.
= sp.exp(1j*omega_n*t).subs(sym_dict) # symbolic version
en_sym = sp.lambdify((t,n,a,T),en_sym) # numerical version
en_num # meshgrid so lambdified function can handle computing t and n
= np.meshgrid(t_array,n_array)
t_array_m, n_array_m = en_num(t_array_m,n_array_m,a_num,T_num) # evaluate en_array
Now we have an exponential value for each harmonic n
and time value t
. We want to take the dot product over
the harmonics n
, leaving a
one-dimensional array in t
.
= en_array.T.dot(cn_array) # transpose to match dimensions f_sum
Plot!
= plt.subplots()
fig, ax
plt.plot(t_array,f_sum)'time (s)')
plt.xlabel(f'partial sum of first ${n_sum}$ terms'); plt.ylabel(
Problem 9.5 (TOTORO)
Consider a periodic function \(y(t)\) with some period \(T\in\mathbb{R}\) and some parameter \(A\in\mathbb{R}\) for which one period is shown in figure 9.11.
Perform a trigonometric Fourier series analysis of \(y(t)\) and write the Fourier series \(Y(\omega)\).
Plot the harmonic amplitude spectrum of \(Y(\omega)\) for \({A = T = 1}\). Consider using computing software.
Plot the phase spectrum of \(Y(\omega)\) for \({A = T = 1}\). Consider using computing software.
Part a: Fourier analysis
The function \(y(t)\) is even, so the trigonometric Fourier analysis of yields \(b_n = 0\) and \[\begin{aligned} \label{eq:totoro:an1} a_n &= \frac{2}{T} \int_{-T/2}^{T/2} y(t) \cos(\omega_n t) dt \end{aligned}\] where \(\omega_n = 2\pi/T\) is the harmonic frequency of each harmonic \(n \in \mathbb{N}_0\). The period of \(y\) from \(-T/2\) to \(T/2\) admits a piecewise definition \[\begin{aligned} y(t) = \begin{cases} \frac{2 A}{T} t & \text{for } t \in [-T/2,-T/4)\\ A & \text{for } t \in [-T/4,T/4) \\ \frac{-2 A}{T} t & \text{for } t \in [T/4,T/2). \end{cases} \end{aligned}\] This simplifies to \[\begin{aligned} a_n &= 4 A \int_{-T/2}^{-T/4} t \cos(\omega_n t) dt +\\ &+ \frac{2 A}{T} \int_{-T/4}^{T/4} \cos(\omega_n t) dt + \\ &- 4 A \int_{T/4}^{T/2} t \cos(\omega_n t) dt. \end{aligned}\] Performing the integrations, \[\begin{aligned} a_n &= \frac{4 A}{\omega_n^2} \left. ( \cos(\omega_n t) + \omega_n t \sin(\omega_n t) )\right|_{-T/2}^{-T/4} +\\ &+ \frac{2 A}{T \omega_n} \sin(\omega_n t)|_{-T/4}^{T/4} + \\ &- \frac{4 A}{\omega_n^2} \left. ( \cos(\omega_n t) + \omega_n t \sin(\omega_n t) )\right|_{T/4}^{T/2}. \end{aligned}\] The accounting here is challenging, so let’s use Matlab to integrate and simplify.
We use Matlab’s Symbolic Math Toolbox.
syms A n wn T t 'real' % symbolic, real
Let’s pick up at the integral just to be safe.
a_n1 = 4*A*int(t*cos(wn*t),t,-T/2,-T/4) + ...
2*A/T*int(cos(wn*t),t,-T/4,T/4) + ...
-4*A*int(t*cos(wn*t),t,T/4,T/2);
a_n2 = simplify(a_n1)
a_n2 =
(4*A*sin((T*wn)/4))/(T*wn) - 8*A*((2*cos((T*wn)/4)^2 + T*wn*cos((T*wn)/4)*sin((T*wn)/4) - 1)/wn^2 - (cos((T*wn)/4) + (T*wn*sin((T*wn)/4))/4)/wn^2)
Let’s try this for the fifth harmonic \(n = 5\):
p.wn = 2*pi*n/T;
subs(subs(a_n2,p),n,5)
ans =
(2*A)/(5*pi) + 8*A*(T^2/(40*pi) + T^2/(100*pi^2))
Not bad. But we have a problem for the “DC” component, \(n = 0\), because we have \(n\) in some denominators.
subs(subs(a_n2,p),n,0)
Error using symengine
Division by zero.
Error in sym/subs>mupadsubs (line 160)
G = mupadmex('symobj::fullsubs',F.s,X2,Y2);
Error in sym/subs (line 145)
G = mupadsubs(F,X,Y);
Instead, as we can see from the a_n2
expression above, \(a_n \rightarrow 0/0\). We have two options
here: either go back to our original formula for \(a_n\) in and
re-integrate with the \(\cos{}\) term
\(0\) or we can take the limit of our
a_n2
expression and apply
l’Hopital’s rule: \[\begin{aligned}
a_0 = \lim_{n\rightarrow 0} a_n.
\end{aligned}\] If we use Matlab to compute the limit, we obtain
the following.
a_0 = simplify(limit(subs(a_n2,p),n,0)) % ugly
a_0 =
-(A*(3*T^2 - 4))/4
Interestingly, \(a_0/2\) is just the mean value of \(y(t)\) over a period. We could “count rectangles/triangles” and find this result.
Part b: harmonic amplitude spectrum
The harmonic ampitude spectrum requires we compute the harmonic
amplitude: \[\begin{aligned}
C_n &= \sqrt{a_n^2 + b_n^2} \\
&= |a_n|. \tag{$b_n = 0$}
\end{aligned}\] So we can use a_n2
and a_0
above. Let’s form a function from
a_n2
, for when \(n \ne 0\).
v.A = 1; % given
v.T = 1; % given
C_n = matlabFunction( ...
abs(subs( ... % for A, T
subs(a_n2,p), ... % for wn
v)) ...
;
)C_0 = abs( ...
subs( ... % for A, T
subs(a_0,p), ... % for wn
v) ...
; )
Now we plot.
n_a = 1:20;
figure
stem([0,n_a],[C_0,C_n(n_a)])
xlabel('harmonic n')
ylabel('harmonic amplitude C_n')
The results are shown in .
Part c: harmonic phase spectrum
The phase can be computed as \[\begin{aligned} \theta_n &= -\arctantwo(b_n,a_n) \end{aligned}\]
But \(b_n = 0\), so the arctangent is always \(0\).
phase_n = zeros(size(n_a));
The phase plot, , then is trivial.
figure
stem([0,n_a],[0,phase_n])
xlabel('harmonic n')
ylabel('harmonic phase')
Problem 9.6 (MALL)
Consider the function \(f:\mathbb{R}\rightarrow\mathbb{R}\) defined as \[\begin{aligned} f(t) = \begin{cases} a - a |t|/T & \text{for } t \in [-T,T] \\ 0 & \text{otherwise} \end{cases} \end{aligned}\] where \(a, T \in \mathbb{R}\). Perform a fourier transform analysis on \(f\), resulting in \(F(\omega)\). Plot \(F\) for various \(a\) and \(T\).
Matlab solution
Find the Fourier transform
First, define symbolic variables and our assumptions about them.
syms a t T f(t) w
assume(a,'real')
assume(t,'real')
assume(T,{'positive','real'})
assume(w,'real')
Define the function we will transform of, \(f(t)\), as a piecewise
function as
f(t) = piecewise(...
-T < t < T, a - a*abs(t)/T, ...
0 ...
)
\(f(t) =\left\lbrace \begin{array}{cl} a-\frac{a\,\left|t\right|}{T} & \;\textrm{if}\;\;t<T\wedge 0<T+t\\ 0 & \;\textrm{otherwise} \end{array}\right.\)
Apply the Fourier transform definition:
F = simplify(...
int(f(t)*exp(-i*w*t),t,-Inf,Inf)...
)
\(F =-\frac{a\,{\mathrm{e}}^{-T\,w\,\mathrm{i}} \,^{T\,w\,\mathrm{i}} -1\right)}}^2 }{T\,w^2 }\)
Plotting \(F(\omega)\)
Generate cell array FF
of
numerically evaluatable functions with
a_ = [1,3,6]; % array of a
T_ = [1,2,3]; % array of T
for ia = 1:length(a_)
for iT = 1:length(T_)
FF{ia,iT} = matlabFunction(subs(F,[a,T],[a_(ia),T_(iT)]));
end
end
Now we are ready to plot them on the same axes with
w_ = linspace(-10,10,301);
figure
for ia = 1:length(a_)
for iT = 1:length(T_)
plot(...
w_,real(FF{ia,iT}(w_)),... % turns out to be all real (not guaranteed, in general!)
'DisplayName',... % for legend
'a = ',num2str(a_(ia)), ...
[', T = ',num2str(T_(iT))], ...
'LineWidth',1 ...
;hold on
)end
end
legend()
hold off
xlabel('angular frequency \omega')
ylabel('F(\omega)')
The plot is shown in .
Python solution
First, load some Python packages.
from sympy import *
import numpy as np
import matplotlib.pyplot as plt
from IPython.display import display, Markdown, Latex
Define the function
Let’s define the symbolic function.
't',real=True)
var('a T',positive=True)
var(= Piecewise(
f + a/T * t, And(t >= -T, t < 0)),
(a - a/T * t, And(t >= 0, t <= T)),
(a 0, And(t < -T, t > T)),
( )
Verify the function by plotting.
= lambdify((t,a,T),f,'numpy')
f_lambda = np.linspace(-7,7,101) t_a
= plt.subplots()
fig, ax 2,3))
plt.plot(t_a,f_lambda(t_a,'harmonic $n$')
plt.xlabel('harmonic amplitude'); plt.ylabel(
Transform
The function is clearly aperiodic, so the fourier transform is the correct analysis. Simply applying the fourier transform definition, we obtain the following.
'w',real=True)
var(= integrate(
F *exp(-I*w*t),(t,-T,T)
f
).simplify().rewrite(cos).trigsimp().simplify()= lambdify((w,a,T),F,'numpy')
F_lambda display(F)
\(\displaystyle \begin{cases} - \frac{2 a \left(\cos{\left(T w \right)} - 1\right)}{T w^{2}} & \text{for}\: T^{2} w^{3} \neq 0 \\T a & \text{otherwise} \end{cases}\)
Nice! Note the use of rewrite
to
go from exponential to trigonometric form.
Plot
Plot with matplotlib
.
= np.array([1,2,3])
a_a = np.array([1,2,3])
T_a = np.linspace(-5,5,200)
w_a = plt.subplots()
fig, ax for i,a_i in enumerate(a_a):
for j,T_j in enumerate(T_a):
plt.plot(
w_a,F_lambda(w_a,a_i,T_j),=f'a = {a_i}, T = {T_j}'
label
)
plt.legend()
plt.grid()'$\omega$ (rad/s)')
plt.xlabel('$F(\omega)$'); plt.ylabel(
Problem 9.7 (MIYAZAKI)
Consider the function \(f:\mathbb{R}\rightarrow\mathbb{R}\) defined as \[\begin{aligned} f(t) = a e^{-b \abs{t - T}} \end{aligned}\] where \(a, b, T \in \mathbb{R}\). Perform a fourier transform analysis on \(f\), resulting in \(F(\omega)\). Plot \(F\) for various \(a\), \(b\), and \(T\).
Problem 9.8 (HAKU)
Consider the function \(f:\mathbb{R}\rightarrow\mathbb{R}\) defined as \[\begin{aligned} f(t) = a \cos\omega_0 t + b \sin\omega_0 t \end{aligned}\] where \(a, b, \omega_0 \in \mathbb{R}\) constants. Perform a fourier transform analysis on \(f\), resulting in \(F(\omega)\).1
According to , \[\begin{aligned} F(\omega) &= a \mathcal{F}(\cos\omega_0 t) + b \mathcal{F}(\sin\omega_0 t) \tag{linearity} \\ &= a \pi (\delta(\omega+\omega_0) + \delta(\omega-\omega_0)) + j b \pi (\delta(\omega+\omega_0) - \delta(\omega-\omega_0)) \end{aligned}\] where \(\delta\) is the dirac delta “function.” This result has a \(\delta\) at \(\pm \omega_0\), both real and imaginary, with strength corresponding to the \(\cos\)/\(a\)/real and \(\sin\)/\(b\)/imaginary components.
Problem 9.9 (SECRETS)
This exercise encodes a “secret word” into a sampled waveform for decoding via a discrete fourier transform (DFT). The nominal goal of the exercise is to decode the secret word. Along the way, plotting and interpreting the DFT will be important.
First, load relevant packages.
import numpy as np
import matplotlib.pyplot as plt
from IPython.display import display, Markdown, Latex
We define two functions: letter_to_number
to convert a letter into
an int
eger index of the alphabet (a
becomes 1, b becomes 2, etc.) and string_to_number_list
to convert a string
to a list
of int
s, as shown in the example at the
end.
def letter_to_number(letter):
return ord(letter) - 96
def string_to_number_list(string):
= [] # list
out for i in range(0,len(string)):
out.append(letter_to_number(string[i]))return out # list
print(f"aces = { string_to_number_list('aces') }")
aces = [1, 3, 5, 19]
Now, we encode a code string code
into a signal by beginning with
“white noise,” which is broadband (appears throughout the
spectrum) and adding to it sin
functions with amplitudes corresponding to the letter assignments of the
code and harmonic corresponding to the position of the letter in the
string. For instance, the string 'bad'
would be represented by noise plus
the signal \[\begin{aligned}
2 \sin{2\pi t} + 1 \sin{4\pi t} + 4 \sin{6\pi t}.
\end{aligned}\]
Let’s set this up for secret word 'chupcabra'
.
= 2000
N = 30
Tm = float(Tm)/float(N)
T = 1/T
fs = np.linspace(0, Tm, N)
x = 4*np.random.normal(0, 1, N)
noise = 'chupcabra' # the secret word
code = np.array(string_to_number_list(code))
code_number_array = np.array(noise)
y for i in range(0,len(code)):
= y + code_number_array[i]*np.sin(2.*np.pi*(i+1.)*x) y
For proper decoding, later, it is important to know the fundamental frequency of the generated data.
print(f"fundamental frequency = {fs} Hz")
fundamental frequency = 66.66666666666667 Hz
Now, we plot.
= plt.subplots()
fig, ax
plt.plot(x,y)0,Tm/4])
plt.xlim(['time (s)')
plt.xlabel('$y_n$')
plt.ylabel( plt.show()
Finally, we can save our data to a numpy
file secrets.npy
to distribute our
message.
'secrets',y) np.save(
Now, I have done this (for a different secret word!) and saved the data; download it here: ricopic.one/mathematical_foundations/source/secrets.npy
In order to load the .npy
file
into Python, we can use the following command.
= np.load('secrets.npy') secret_array
Your job is to (a) perform a DFT, (b) plot the spectrum, and (c) decode the message! Here are a few hints.
Use
from scipy import fft
to do the DFT.Use a
hanning
window to minimize the end-effects. Seenumpy.hanning
for instance. Thefft
call might then look like2*fft(np.hanning(N)*secret_array)/N
where
N = len(secret_array)
.Use only the positive spectrum; you can lop off the negative side and double the positive side.
Load some Python packages.
We define two functions: number_to_letter
to convert a number
(int
) into a str
ing corresponding to the index of the
alphabet (1\(\rightarrow\)a, 2\(\rightarrow\)a, etc.) and number_list_to_string
to convert a list
of int
s to a str
ing, as shown in the examples at the
end.
def number_to_letter(number):
return chr(number+96)
def number_list_to_string(number_list):
= ''
out for i in range(0,len(number_list)):
= out + number_to_letter(number_list[i])
out return out # list
print(number_to_letter(26))
print(number_list_to_string([1, 3, 5, 19]))
z
aces
= np.load('secrets.npy')
y = len(y)
N = 66.66666666666667 # must be given fs
Perform the FFT with a Hanning window (normalization by a factor of two is due to the “window gain” that effectively divides the spectrum by two).
= 2*fft(np.hanning(N)*y)/N # FFT with proper normalization Y
We only care about the positive spectrum, so we multiply by a factor of two and take the first “half” of the spectrum, as usual.
= 2*abs(Y[range(int(N/2))]) Y_positive_zero
Similarly, the frequencies can be assigned given the sample
rate fs
.
= np.arange(0,N/2)*fs/N freq_positive_zero
Before we try to quantify, let’s examine the spectrum, shown in , decide the length of our word, and manually read the first letter (at \(1\) Hz).
= plt.subplots()
fig, ax 'r-',linewidth=2)
ax.plot(freq_positive_zero,Y_positive_zero,'frequency $f$ (Hz)')
plt.xlabel('$Y_m$');
plt.ylabel( plt.show()
It looks like the length is as follows.
= 11 word_length
Now to “read” each letter. First, we define a “find nearest” function (thanks: stackoverflow!).
def find_nearest_idx(array,value):
= np.searchsorted(array, value, side="left")
idx if (idx > 0
and (idx == len(array)
or math.fabs(value - array[idx-1]) <
- array[idx]))):
math.fabs(value return idx-1
else:
return idx
= []
letter_number_list for i in range(0,word_length):
= find_nearest_idx(freq_positive_zero,i+1)
idx int(round(Y_positive_zero[idx])))
letter_number_list.append(
= number_list_to_string(letter_number_list)
secret_word print('the secret word is '+secret_word)
the secret word is abracadabra
Problem 9.10 (SOCIETY)
Derive a fourier transform property for expressions including function \(f:\mathbb{R}\rightarrow\mathbb{R}\) for \[\begin{aligned} f(t) \cos(\omega_0 t + \psi) \end{aligned}\] where \(\omega_0, \psi \in \mathbb{R}\).
Problem 9.11 (FLAPPER)
Consider the function \(f:\mathbb{R}\rightarrow\mathbb{R}\) defined as \[\begin{aligned} f(t) = a u_s(t) e^{-b t} \cos(\omega_0 t + \psi) \end{aligned}\] where \(a, b, \omega_0, \psi \in \mathbb{R}\) and \(u_s(t)\) is the unit step function. Perform a fourier transform analysis on \(f\), resulting in \(F(\omega)\). Plot \(F\) for various \(a\), \(b\), \(\omega_0\), \(\psi\) and \(T\).
Problem 9.12 (EASTEGG)
Consider the function \(f:\mathbb{R}\rightarrow\mathbb{R}\) defined as \[\begin{aligned} f(t) = g(t) \cos(\omega_0 t) \end{aligned}\] where \(\omega_0 \in \mathbb{R}\) and \(g:\mathbb{R}\rightarrow\mathbb{R}\) will be defined in each part below. Perform a fourier transform analysis on \(f\) for each \(g\) below for \(\omega_1 \in \mathbb{R}\) a constant and consider how things change if \(\omega_1 \rightarrow \omega_0\).
\(g(t) = \cos(\omega_1 t)\)
\(g(t) = \sin(\omega_1 t)\)
Consider first the transform (courtesy of ) \[\begin{aligned} G(\omega) &= \pi \delta(\omega+\omega_1) + \pi \delta(\omega-\omega_1). \end{aligned}\] Also from , \[\begin{aligned} F(\omega) &= \frac{1}{2} G(\omega + \omega_0) + \frac{1}{2} G(\omega - \omega_0). \end{aligned}\] Now, the mash-up: \[\begin{aligned} F(\omega) &= \frac{\pi}{2} (\delta(\omega+\omega_0+\omega_1) + \delta(\omega+\omega_0-\omega_1)) \\ &+ \frac{\pi}{2} (\delta(\omega-\omega_0+\omega_1) + \delta(\omega-\omega_0-\omega_1)). \end{aligned}\] To help us parse this, let \(\Omega = \omega_0 + \omega_1\) and \(\Delta = \omega_0 - \omega_1\), so \[\begin{aligned} F(\omega) &= \frac{\pi}{2} (\delta(\omega+\Omega) + \delta(\omega+\Delta)) \\ &+ \frac{\pi}{2} (\delta(\omega-\Delta) + \delta(\omega-\Omega)). \end{aligned}\] This has a peaks at \(\pm \Omega\) and \(\pm \Delta\). If we let \(\omega_1 \rightarrow \omega_0\), then \(\Omega = 2 \omega_0\) and \(\Delta = 0\), which yields \[\begin{aligned} F(\omega) &= \frac{\pi}{2} \delta(\omega+2 \omega_0) + \pi \delta(\omega) + \frac{\pi}{2} \delta(\omega-2 \omega_0). \end{aligned}\] Interestingly, this yields a DC component.
Consider first the transform (courtesy of ) \[\begin{aligned} G(\omega) &= j \pi \delta(\omega+\omega_1) - j \pi \delta(\omega-\omega_1). \end{aligned}\] Also from , as before, \[\begin{aligned} F(\omega) &= \frac{1}{2} G(\omega + \omega_0) + \frac{1}{2} G(\omega - \omega_0). \end{aligned}\] Now, the mash-up: \[\begin{aligned} F(\omega) &= j \frac{\pi}{2} (\delta(\omega+\omega_0+\omega_1) - \delta(\omega+\omega_0-\omega_1)) \\ &+ j \frac{\pi}{2} (\delta(\omega-\omega_0+\omega_1) - \delta(\omega-\omega_0-\omega_1)). \end{aligned}\] To help us parse this, let \(\Omega = \omega_0 + \omega_1\) and \(\Delta = \omega_0 - \omega_1\), so \[\begin{aligned} F(\omega) &= j\frac{\pi}{2} (\delta(\omega+\Omega) - \delta(\omega+\Delta)) \\ &+ j\frac{\pi}{2} (\delta(\omega-\Delta) - \delta(\omega-\Omega)). \end{aligned}\] This has a peaks at \(\pm \Omega\) and \(\pm \Delta\). If we let \(\omega_1 \rightarrow \omega_0\), then \(\Omega = 2 \omega_0\) and \(\Delta = 0\), which yields \[\begin{aligned} F(\omega) &= j\frac{\pi}{2} \delta(\omega+2 \omega_0) + j\frac{\pi}{2} \delta(\omega-2 \omega_0). \end{aligned}\] Interestingly, in this case, the DC component vanishes!
Problem 9.13 (SAVAGE)
An instrument called a “lock-in amplifier” can measure a sinusoidal signal \(A \cos(\omega_0 t + \psi) = a \cos(\omega_0 t) + b \sin(\omega_0 t)\) at a known frequency \(\omega_0\) with exceptional accuracy even in the presence of significant noise \(N(t)\). The workings of these devices can be described in two operations: first, the following operations on the signal with its noise, \(f_1(t) = a \cos(\omega_0 t) + b \sin(\omega_0 t) + N(t)\), \[\begin{aligned} f_2(t) = f_1(t) \cos(\omega_1 t) \quad\text{and}\quad f_3(t) = f_1(t) \sin(\omega_1 t). \end{aligned}\] where \(\omega_0, \omega_1, a, b \in \mathbb{R}\). Note the relation of this operation to the Fourier transform analysis of . The key is to know with some accuracty \(\omega_0\) such that the instrument can set \(\omega_1 \approx \omega_0\). The second operation on the signal is an aggressive low-pass filter. The filtered \(f_2\) and \(f_3\) are called the in-phase and quadrature components of the signal and are typically given a complex representation \[\begin{aligned} (\text{in-phase}) + j\, (\text{quadrature}). \end{aligned}\] Explain with fourier transform analyses on \(f_2\) and \(f_3\)
what \(F_2 = \mathcal{F}(f_2)\) looks like,
what \(F_3 = \mathcal{F}(f_3)\) looks like,
why we want \(\omega_1 \approx \omega_0\),
why a low-pass filter is desirable, and
what the time-domain signal will look like.
Problem 9.14 (STRAWMAN)
Consider again the lock-in amplifier explored in problem 9.13. Investigate the lock-in amplifier numerically with the following steps.
Generate a noisy sinusoidal signal at some frequency \(\omega_0\). Include enough broadband white noise that the signal is invisible in a time-domain plot.
Generate \(f_2\) and \(f_3\), as described in problem 9.13.
Apply a time-domain discrete low-pass filter to each \(f_2 \mapsto \phi_2\) and \(f_3 \mapsto \phi_3\), such as scipy’s
scipy.signal.sosfiltfilt
, to complete the lock-in amplifier operation. Plot the results in time and as a complex (polar) plot.Perform a discrete fourier transform on each \(f_2 \mapsto F_2\) and \(f_3 \mapsto F_3\). Plot the spectra.
Construct a frequency domain low-pass filter \(F\) and apply it (multiply!) to each \(F_2 \mapsto F_2'\) and \(F_3 \mapsto F_3'\). Plot the filtered spectra.
Perform an inverse discrete fourier transform to each \(F_2' \mapsto f_2'\) and \(F_3' \mapsto f_3'\). Plot the results in time and as a complex (polar) plot.
Compare the two methods used, i.e. time-domain filtering versus frequency-domain filtering.
It may be alarming to see a Fourier transform of a periodic function! Strictly speaking, it does not exist; however, if we extend the transform to include the distribution (not actually a function) Dirac \(\delta(\omega)\), the modified-transform does exist and is given in .↩︎
Online Resources for Section 9.5
No online resources.