Fourier transform
We begin with the usual loading of modules.
import numpy as np # for numerics
import sympy as sp # for symbolics
import matplotlib.pyplot as plt # for plots!
from IPython.display import display, Markdown, Latex
Let’s consider a periodic function \(f\) with period \(T\) (T
). Each period, the function has a
triangular pulse of width \(\delta\)
(pulse_width
) and height \(\delta/2\).
= 15 # period
period = 2 # pulse width pulse_width
First, we plot the function \(f\) in the time domain. Let’s begin by defining \(f\).
def pulse_train(t,T,pulse_width):
= lambda x:pulse_width/2-abs(x) # pulse
f = np.mod(t,T)
tm if tm <= pulse_width/2:
return f(tm)
elif tm >= T-pulse_width/2:
return f(-(tm-T))
else:
return 0
Now, we develop a numerical array in time to plot \(f\).
= 201 # number of points to plot
N = np.linspace(-period/2,5*period/2,N) # time values
tpp = np.array(np.zeros(tpp.shape))
fpp for i,t_now in enumerate(tpp):
= pulse_train(t_now,period,pulse_width) fpp[i]
= plt.figure(1)
p 'b-',linewidth=2) # plot
plt.plot(tpp,fpp,'time (s)')
plt.xlabel(-period/2,3*period/2])
plt.xlim([
plt.xticks(0,period],
[0,'$T='+str(period)+'$ s']
[
)0,pulse_width/2],['0','$\delta/2$'])
plt.yticks([# display here plt.show()
For \(\delta = 2\) and \(T \in [5,15,25]\), the left-hand column of figure 9.4 shows two triangle pulses for each period \(T\).
Consider the following argument. Just as a Fourier series is a frequency domain representation of a periodic signal, a Fourier transform is a frequency domain representation of an aperiodic signal (we will rigorously define it in a moment). The Fourier series components will have an analog, then, in the Fourier transform. Recall that they can be computed by integrating over a period of the signal. If we increase that period infinitely, the function is effectively aperiodic. The result (within a scaling factor) will be the Fourier transform analog of the Fourier series components.
Let us approach this understanding by actually computing the Fourier
series components for increasing period \(T\) using . We’ll use sympy
to compute the Fourier series
cosine and sine components \(a_n\) and
\(b_n\) for component \(n\) (n
) and period \(T\) (T
).
'x,a_0,a_n,b_n',real=True)
sp.var('delta,T',positive=True)
sp.var('n',nonnegative=True)
sp.var(# a0 = 2/T*sp.integrate(
# (delta/2-sp.Abs(x)),
# (x,-delta/2,delta/2) # otherwise zero
# ).simplify()
= sp.integrate(
an 2/T*(delta/2-sp.Abs(x))*sp.cos(2*sp.pi*n/T*x),
-delta/2,delta/2) # otherwise zero
(x,
).simplify()= 2/T*sp.integrate(
bn /2-sp.Abs(x))*sp.sin(2*sp.pi*n/T*x),
(delta-delta/2,delta/2) # otherwise zero
(x,
).simplify() display(sp.Eq(a_n,an),sp.Eq(b_n,bn))
\(\displaystyle a_{n} = \begin{cases} \frac{T \left(1 - \cos{\left(\frac{\pi \delta n}{T} \right)}\right)}{\pi^{2} n^{2}} & \text{for}\: n \neq 0 \\\frac{\delta^{2}}{2 T} & \text{otherwise} \end{cases}\)
\(\displaystyle b_{n} = 0\)
Furthermore, let us compute the harmonic amplitude
(f_harmonic_amplitude
): \[\begin{aligned}
C_n = \sqrt{a_n^2 + b_n^2}
\end{aligned}\] which we have also scaled by a factor \(T/\delta\) in order to plot it with a
convenient scale.
'C_n',positive=True)
sp.var(= sp.sqrt(an**2+bn**2)
cn display(sp.Eq(C_n,cn))
\(\displaystyle C_{n} = \begin{cases} \frac{T \left|{\cos{\left(\frac{\pi \delta n}{T} \right)} - 1}\right|}{\pi^{2} n^{2}} & \text{for}\: n \neq 0 \\\frac{\delta^{2}}{2 T} & \text{otherwise} \end{cases}\)
Now we lambdify the symbolic expression for a numpy
function.
= sp.lambdify((n,T,delta),cn) cn_f
Now we can plot.
= 12 # rad/s max frequency in line spectrum
omega_max = round(omega_max*period/(2*np.pi)) # max harmonic
n_max = np.linspace(0,n_max,n_max+1)
n_a = 2*np.pi*n_a/period
omega = plt.figure(2)
p = plt.stem(
markerline, stemlines, baseline /pulse_width*cn_f(n_a,period,pulse_width),
omega, period='b-', markerfmt='bo', basefmt='r-',
linefmt=True,
use_line_collection
)'frequency $\omega$ (rad/s)')
plt.xlabel(0,omega_max])
plt.xlim([0,pulse_width/2])
plt.ylim([0,pulse_width/2],['0','$\delta/2$'])
plt.yticks([# show here plt.show()
The line spectra are shown in the right-hand column of figure 9.4. Note that with our chosen scaling, as \(T\) increases, the line spectra reveal a distinct waveform.
Let \(F\) be the continuous function of angular frequency \(\omega\) \[\begin{aligned} F(\omega) = \frac{\delta}{2} \cdot \frac{\sin^2(\omega \delta/4)}{(\omega \delta/4)^2}. \end{aligned}\] First, we plot it.
= lambda w: pulse_width/2* \
F *pulse_width/(2*2))**2/ \
np.sin(w*pulse_width/(2*2))**2
(w= 201 # number of points to plot
N = np.linspace(0.0001,omega_max,N)
wpp = []
Fpp for i in range(0,N):
# build array of function values
Fpp.append(F(wpp[i])) = plt.figure(3)
axes 'b-',linewidth=2) # plot
plt.plot(wpp,Fpp,0,omega_max])
plt.xlim([0,pulse_width/2],['0','$\delta/2$'])
plt.yticks(['frequency $\omega$ (rad/s)')
plt.xlabel('$F(\omega)$')
plt.ylabel( plt.show()
Let’s consider the plot in figure 9.5 of \(F\). It’s obviously the function emerging in figure 9.4 from increasing the period of our pulse train.
Now we are ready to define the Fourier transform and its inverse.
Definition
Fourier transform (analysis): \[\begin{aligned} A(\omega) &= \int_{-\infty}^\infty y(t) \cos(\omega t) dt \\ B(\omega) &= \int_{-\infty}^\infty y(t) \sin(\omega t) dt. \end{aligned}\] Inverse Fourier transform (synthesis): \[\begin{aligned} y(t) = \frac{1}{2\pi} \int_{-\infty}^\infty A(\omega) \cos(\omega t) d\omega + \frac{1}{2\pi} \int_{-\infty}^\infty B(\omega) \sin(\omega t) d\omega. \end{aligned}\]
Definition
Fourier transform \(\mathcal{F}\) (analysis): \[\begin{aligned} \label{eq:fourier_transform} \mathcal{F}(y(t)) = Y(\omega) = \int_{-\infty}^\infty y(t) e^{-j\omega t} dt. \end{aligned}\] Inverse Fourier transform \(\mathcal{F}^{-1}\) (synthesis): \[\begin{aligned} \label{eq:inverse_fourier_transform} \mathcal{F}^{-1}(Y(\omega)) = y(t) = \frac{1}{2\pi}\int_{-\infty}^\infty Y(\omega) e^{j\omega t} d\omega. \end{aligned}\]
So now we have defined the Fourier transform. There are many
applications, including solving differential equations and frequency
domain
representations—called spectra—of time domain
functions.
There is a striking similarity between the Fourier transform and the Laplace transform, with which you are already acquainted. In fact, the Fourier transform is a special case of a Laplace transform with Laplace transform variable \(s = j\omega\) instead of having some real component. Both transforms convert differential equations to algebraic equations, which can be solved and inversely transformed to find time-domain solutions. The Laplace transform is especially important to use when an input function to a differential equation is not absolutely integrable and the Fourier transform is undefined (for example, our definition will yield a transform for neither the unit step nor the unit ramp functions). However, the Laplace transform is also preferred for initial value problems due to its convenient way of handling them. The two transforms are equally useful for solving steady state problems. Although the Laplace transform has many advantages, for spectral considerations, the Fourier transform is the only game in town.
A table of Fourier transforms and their properties can be found in .
Consider the aperiodic signal y(t) = us(t)e−at with us the unit step function and a > 0. The signal is plotted below. Derive the complex frequency spectrum and plot its magnitude and phase.
The signal is aperiodic, so the Fourier transform can be computed from : $$\begin{align} Y(\omega) &= \int_{-\infty}^\infty y(t) e^{j\omega t} dt \\ &= \int_{-\infty}^\infty u_s(t) e^{-a t} e^{j\omega t} dt \tag{def.\ of $y$} \\ &= \int_{0}^\infty e^{-a t} e^{j\omega t} dt \tag{$u_s$ effect} \\ &= \int_{0}^\infty e^{(-a + j\omega) t} dt \tag{multiply} \\ &= \left.\frac{1}{-a+j\omega} e^{(-a + j\omega) t}\right|_{0}^\infty dt \tag{antiderivative} \\ &= \frac{1}{-a+j\omega} \left( \lim_{t\rightarrow \infty} e^{(-a + j\omega) t} - e^0 \right) \tag{evaluate} \\ &= \frac{1}{-a+j\omega} \left( \lim_{t\rightarrow \infty} e^{-a t} e^{j\omega t} - 1 \right) \tag{arrange} \\ &= \frac{1}{-a+j\omega} \left( (0) (\text{complex with mag} \le 1) - 1 \right) \tag{limit} \\ &= \frac{-1}{-a+j\omega} \tag{consequence} \\ &= \frac{1}{a-j\omega} \\ &= \frac{a+j\omega}{a+j\omega}\cdot\frac{1}{a-j\omega} \tag{rationalize} \\ &= \frac{a+j\omega}{a^2 + \omega^2}. \end{align}$$
The magnitude and phase of this complex function are straightforward to compute: $$\begin{aligned} |Y(\omega)| &= \sqrt{\Re(Y(\omega))^2 + \Im(Y(\omega))^2} \\ &= \frac{1}{a^2 + \omega^2}\sqrt{a^2 + \omega^2} \\ &= \frac{1}{\sqrt{a^2 + \omega^2}} \\ \angle Y(\omega) &= \arctan(\omega/a). \end{aligned}$$
Now we can plot these functions of ω. Setting a = 1 (arbitrarily), we obtain the plots of .
Online Resources for Section 9.3
No online resources.