
System Dynamics

System Dynamics

Rico A.R. Picone

© 2024 Rico A.R. Picone

All rights reserved. No part of this book may be reproduced in any form by any electronic or
mechanical means (including photocopying, recording, or information storage and retrieval)
without permission in writing from the author.

Contents

1 Introduction 1
1.1 The Systems Approach 9
1.2 State-Determined Systems 10
1.3 Energy, Power, and Lumping 12
1.4 Mechanical Translational Elements 13
1.5 Mechanical Rotational Elements 17
1.6 Electronic Elements 20
1.7 Generalized Through- and Across-Variables 24
1.8 Generalized One-Port Elements 25
1.9 Problems 27

2 Linear Graph Models 29
2.1 Introduction to Linear Graphs 29
2.2 Sign Convention 32
2.3 Element Interconnection Laws 39
2.4 Systematic Linear Graph Modeling 42
2.5 Problems 45

3 State-Space Models 51
3.1 State Variable System Representation 51
3.2 State and Output Equations 53
3.3 Normal Trees 54
3.4 Normal Tree to State-Space 56
3.5 State-Space Model of a Translational Mechanical System 60
3.6 State-Space Model of a Rotational Mechanical System 66
3.7 Problems 71

4 Electromechanical Systems 79

vi Contents

4.1 Ideal Transducers 79
4.2 Modeling with Transducers 82
4.3 DC Motors 84
4.4 Modeling a Real Electromechanical System 90
4.5 DC Motor Performance in Steady-State 94
4.6 Transient DC Motor Performance 100
4.7 Simulating the Step Response 101
4.8 Estimating Parameters from the Step Response 105
4.9 Driving Motors 110
4.10 Problems 112

5 Linear Time-Invariant System Properties 119
5.1 Superposition, Derivative, and Integral Properties 120
5.2 Equilibrium and Stability Properties 121
5.3 Vibration Isolation Table Analysis 123
5.4 When Gravity Ghosts You 130
5.5 Problems 133

6 Qualities of Transient Response 135
6.1 Characteristic Transient Responses 136
6.2 First-Order Systems in Transient Response 136
6.3 Second-Order Systems in Transient Response 140
6.4 Problems 147

7 State-Space Response 149
7.1 Solving for the State-Space Response 150
7.2 Linear Algebraic Eigenproblem 153
7.3 Computing Eigendecompositions 155
7.4 Diagonalizing Basis 159
7.5 A Vibration Example with Two Modes 163
7.6 Analytic and Numerical Output Response Example in Matlab 170
7.7 Simulating State-Space Response 174
7.8 Problems 181

8 Lumped-Parameter Modeling Fluid and Thermal Systems 185
8.1 Fluid System Elements 186
8.2 Thermal System Elements 190
8.3 Fluid Transducers 194
8.4 State-Space Model of a Hydroelectric Dam 196
8.5 Thermal Finite Element Model 198

Contents vii

8.6 Problems 204

9 Fourier Series and Transforms 209
9.1 Fourier Series 209
9.2 Complex Fourier Series Example 212
9.3 Fourier Transform 217
9.4 Discrete and Fast Fourier Transforms 225
9.5 Problems 231

10 Laplace Transforms 237
10.1 Introduction 237
10.2 Laplace Transform and Its Inverse 239
10.3 Properties of the Laplace Transform 242
10.4 Inverse Laplace Transforming 243
10.5 Solving Io ODEs with Laplace 247
10.6 Problems 251

11 Transfer Functions 253
11.1 Introducing Transfer Functions 253
11.2 Poles and Zeros 258
11.3 Transfer Functions in Python 262
11.4 Exploring Transfer Functions in Matlab 265
11.5 ZPK Transfer Functions in Matlab 269
11.6 Problems 271

12 Impedance-Based Modeling 273
12.1 Input Impedance and Admittance 273
12.2 Impedance with Two-Port Elements 276
12.3 Transfer Functions via Impedance 278
12.4 Impedance Modeling Example in Matlab 279
12.5 Norton and Thévenin Theorems 283
12.6 The Divider Method 286
12.7 Problems 290

13 Frequency Response 295
13.1 Frequency and Impulse Response 295
13.2 Sinusoidal Input, Frequency Response 301
13.3 Bode Plots 303
13.4 Bode Plots for Simple Transfer Functions 305
13.5 Sketching Bode Plots 308

viii Contents

13.6 Periodic Input, Frequency Response 311
13.7 Problems 316

14 Nonlinear Systems and Linearization 321
14.1 Linearization 322
14.2 Nonlinear System Characteristics 323
14.3 Nonlinear Systems in Python 325
14.4 Nonlinear Systems in Matlab 326
14.5 Nonlinear Fluid System Example 329
14.6 Problems 336

A Math Reference 343
A.1 Quadratic Forms 343
A.2 Trigonometry 343
A.3 Matrix Inverses 347
A.4 Euler’s Formulas 347
A.5 Laplace Transforms 348

B Advanced Topics 349
B.1 Systems with Repeated Eigenvalues 349

C Summaries 351
C.1 Summary of System Representations 351
C.2 Summary of One-Port Elements 352
C.3 Laplace Transforms 352
C.4 Fourier Transforms 353

Bibliography 357

1 Introduction LINK
V7

System dynamics is the field that studies dynamic systems. And dynamic systems
are those that change. But on a long-enough time scale, it’s hard to find systems that
don’t change. If we are to be a bit more modest in our definition, although modest
we are not, we can conclude: dynamic systems are those that change significantly
on interesting time-scales. However, there is a further qualification in order, since a
common thread runs through the entire field: that ofmathematical representation.
Every dynamic system studied has or could have a mathematical representation.
“Mathematical representations” are here understood broadly, encompassing equa-
tions and also graphical depictions with implicit mathematical relations. With this
in mind, we arrive at our final definition.

Definition 1.1

A dynamic system is one that changes significantly on interesting time-scales
and can be represented mathematically.

This is actually quite broad. For instance, conceivably we could derive a math-
ematical model for the number of poodles barking in France or the sum of the
diameters of all human eyes.
With the relatively intuitive graphical forms of dynamic system representation

described below, one might wonder why more explicitly mathematical representa-
tions are required at all. The answer is that while the design of dynamic systems
is aided by such graphical representations, thorough mathematical analysis is
indispensable for good design. With such analysis we can predict, for instance,
the maximum acceleration a person in a vehicle would experience under certain
operating conditions.
Dynamic systemmathematical models will frequently include the following types

variables, which will be described in more detail later in this chapter.

time An independent time variable, often given the symbol C.

https://sys.ricopic.one/v7
https://sys.ricopic.one/v7

2 Chapter 1

parameters Parameters are variables, usually considered constant, that describe the
system’s physical qualities (e.g., mass, length, electrical capacitance, thermal
resistance, etc.).

input variables Input variables represent generally variable quantities indepen-
dent of the system (e.g., external force, voltage source, pump pressure, etc.).
These are usually given variants of the symbol D.

output variables Output variables are dependent variables that represent quan-
tities of interest. (e.g., velocity of a vehicle, voltage across certain terminals,
number of poodles barking, etc.). These are usually given variants of the
symbol H.

state variables State variables are a minimal (but not unique) set of dependent
variables that represent the internal status or “state” of the system (e.g., force
through a spring, velocity of a mass, voltage of a capacitor, current through
an inductor, etc.). These are usually given variants of the symbol G.

We here give an overview of some of the most important system representations,
all of which are described in detail later in the text. It helps to get a lay of the land
before we go exploring.

Graphical representations

Several types of graphical representations can be useful. We begin with the ven-
erable diagram or schematic, which should include all important elements of the
system, such as those shown in figure 1.1.

Figure 1.1. Schematics representing (left-to-right) electronic, discrete mechanical, fluid,
and continuous mechanical systems.

The mathematical relations in schematics are frequently rather implicit. For
instance, the schematics of the two-mass system in figure 1.1 explicitly specifies
certain equations, such that the force applied by the spring : is equal in magnitude
and opposite in direction for each mass element <1 and <2. The equations for each
element, later called the “elemental equations,” are rarely explicitly given in any
of the graphical system representations. In our two-mass example, for instance,
each mass element would have Newton’s second law as its elemental equation.
This is implied by the fact that it is represented as a mass. However, sometimes

Introduction 3

additional information is required. In the case of the spring : connecting the masses,
it is reasonable to expect that the force in the spring is monotonically related to its
length—this is (as we will see) what it means for an element to behave as a spring.
However, from the schematic alone, it would be risky to assume the spring follows
Hooke’s law—that is, that its force is proportional to its length. So many diagrams
require a narrative supplement.
A more-precise and minimal graphical representation of a dynamic system is the

linear graph, the subject of (ch:linear_graph_models).1 Some sample linear graphs
are shown in figure 1.2.

Figure 1.2. Linear graph representations of three systems. Elements are in black and
nodes are in magenta.

Linear graphs are more-precise than schematics in that they explicitly connect
elements (graph edges) at graph nodes. Explicit here are the structural relations
among elements, which can be transcribed into equations. For instance, the elec-
tronic subsystem of the middle linear graph above tells us, à la Kierchhoff’s voltage
law, that the voltage across each of the elements sum to zero: +(− E1 − E' = 0. Sim-
ilarly, à la Kierchhoff’s current law, the currents through each of the elements at
the node connecting elements ' and 1 sum to zero: 8' − 81 = 0. We generalize these
relations for linear graphs in (lec:element_interconnection_laws) Once again, the
elemental equations are implicit.
The final type of graphical system representation we consider extensively in the

text is the block diagram, a couple examples of which are shown in figure 1.3.

1. It is worth mentioning a related type of graphical representation, the bond graph. The linear graph
and bond graph representations are equivalent in many ways, but we prefer the linear graph for its
intuitiveness.

4 Chapter 1

Figure 1.3. Block diagrams of two systems.

Block diagrams are more high-level than schematics and linear graphs, and
usually show the interconnection of multiple dynamic systems. In figure 1.3, the
systems represented by blocks � and � are concatenated such that the output of �
is the input of �. The contents of the blocks are systems usually interpreted in an
explicitly mathematical form that will be introduced in a moment called the transfer
function that relates the input and output variables; in our example, � maps .1 to
.2, � maps .2 to .3, and) maps .6 to .7. The lines and arrows “carry” variables (.8
in our case) among the systems. In addition to system blocks, sometimes summing

junctions, as shown on the right of figure 1.3, sum two variables; in our example,
.6 =.4 +.5.

Time-domain (differential) equations

Now we begin to make explicit all the mathematics implied in the graphical repre-
sentations above. We have already seen how algebraic relationships are implied by
the interconnection of elements in schematics, linear graphs, and block diagrams.
The “elemental” equations implicit in schematics and linear graphs can also be
algebraic, but usually some in every system are differential equations. For example,
the elemental equation for a mass element < is Newton’s second law, which, in one
dimension and with applied force 5 and coordinate G, is

5 =<
32G

3C2
.

The time-derivative here makes this a differential equation. When combined with
algebraic and other differential equations in the system, the system of equations
remains differential.
So a system is described by a system of algebraic and differential equations. There

are two common ways to represent this system. The first is as a single differential
equation of order =, which is the result of combining all the algebraic and differential
equations into a single scalar equation. The result—when the system is ordinary,
linear, and time-invariant (all these terms will be described later in this text)—is
what we call the input-output differential equation (io ODE) that relates input

Introduction 5

variable D(C) and output variable H(C):

8
3=H

3C=
+ 0=−1

3=−1H

3C=−1
+ · · · + 01

3H

3C
+ 00H =

1<
3<D

3C<
+ 1<−1

3<−1D

3C<−1
+ · · · + 11

3D

3C
+ 10D

where 08 , 1 9 are constants defined in terms of a system’s parameters. The io ODE
representation is convenient because, for many common system orders = and inputs
D, the analytic solution for H(C) is known, or at least amethodical process for deriving
the solution is known. (ch:superposition_stability_and_other_lti_system_properties)
make extensive use of the io ODE representation and show multiple solution
techniques.
The other common representation of the system of equations is the state equation:

a system of first-order ODEs in dependent variables G8(C) collected into a state vector
x(C) and multiple input variables D9(C) collected into the input vector u such that

3x
3C

= f (x , u , C) (1.1)

where f is a vector-valued function that also depends on the system parameters.
This equation can be linear or nonlinear. Note that multiple outputs H: can also be
found from the output equation

y= g(x , u , C) (1.2)

where g is a vector-valued function that also depends on the system parameters.
Together, equation (1.1) comprise what is called a state-space model of a system.

The state-space model can fully represent a system with multiple inputs and multi-
ple outputs, something not possible with an io ODE. For many linear systems, the
state equation can be solved analytically, as described in (ch:state_space_response).
Another advantage of the state-space model is that it can also be easily solved
numerically, as (ch:state_space_response) also covers.
The mathematical system representations above include many variables that

are presented as explicit functions of time C, which is why we say that they are
time-domain representations.

Frequency-domain (algebraic) equations

The remaining system representations are in what is called the frequency domain,
which encompasses those that involve functions of not time but either angular
frequency $ or Laplace transform variable B. In fact, the Laplace and Fourier

6 Chapter 1

transforms2 and their inverses are the bridges between the time- and frequency-
domains.
The frequency domain will be properly introduced in (part:frequency_domain).

For now, let’s define these two remaining system representations in terms of their
respective transforms. It is worth noting that the following representations are only
defined for linear systems.
The transfer function �(B) is defined as the ratio of the Laplace transform of the

output .(B) ≡ℒ(H(C)) to the Laplace transform of the input*(B) ≡ℒ(D(C)); that is,

�(B) ≡ .(B)
*(B) .

A quick rearrangement yields the output

.(B)=�(B)*(B).
If we were to inverse Laplace transform ℒ−1 this, we would get H(C)! Let’s loop
back for a moment to the block diagram representations of figure 1.3. We said the
block � maps input .1 to output .2. The specific mapping is now clear: the block �
is usually represented by the transfer function �(B), so

�(B)= .2(B)
.1(B)

and .2(B)=�(B).1(B).

We see that this means, in the Laplace domain, system blocks are just algebraic
products of the input and the transfer function. What’s more, this transfer function
thinking is very powerful: the system is understood as operating on an input with
a transfer function and yielding an output.
The frequency response function �(9$) is defined similarly, but in terms

of the Fourier transform. The Fourier transform ℱ is introduced gently in
(ch:fourier_series_and_transforms), but for now just think of it as similar to the
Laplace transform (it is). The frequency response function �(9$) is defined as the
ratio of the Fourier transform of the output .($) ≡ ℱ (H(C)) to the Fourier transform
of the input*($) ≡ ℱ (D(C)); i.e.

�(9$) ≡ .($)
*($) .

A quick rearrangement yields the output

.($)=�(9$)*($).
If we were to inverse Fourier transform ℱ −1 this, we would get H(C)! Here we can
gain the insight that the frequency response function, like the transfer function,

2. The Fourier series is also included, here.

Introduction 7

relates the input and output. The difference is that the frequency response function
is explicitly dependent on the angular frequency $. Wewill see that, for a sinusoidal
input at frequency $, �(9$) returns a sinusoid at the same frequency, with only
the amplitude and phase altered! This will be one of the key insights that will allow
us to understand the performance of a system in terms of its frequency response
function.

Summarizing

We’ve considered the three most important graphical and four most important
explicitly mathematical dynamic system representations! Most of system dynamics
is the study of such representations, their construction, characteristics, and perfor-
mance. If you’re overwhelmed, keep in mind that this is a high-level view of … the
entirety of system dynamics!
Many of these representations can straightforwardly be converted into any other.

The representations and their conversion pathways are sketched in figure 1.4. Use
this as a map as we explore the rich landscape of system dynamics!

8 Chapter 1

Figure 1.4. Relations among system representations.

Introduction 9

1.1 The Systems Approach LINK
CG

Simon Ramo and Richard Booton, Jr.—the folks who brought us the
intercontinental ballistic missile (ICBM) (thanks? …I mean thanks.
But, thanks?)—defined systems engineering to be

[The] design of the whole as distinguished from the design of the parts.
(Ramo1984)

Like the ICBM, many modern technologies require this systems engineering
design approach.
A key aspect of the systems engineering design process is the mathematical

modeling of the system—the development of a dynamic system representation.
Dynamic systems exhibit behavior that can be characterized through analysis and

called the system’s properties. A property of a dynamic system might be how long
it takes for it to respond to a given input or which types of inputs would cause a
damaging response. Clearly, such properties are of significant interest to the design
process.
This Part of the text focuses on electromechanical systems: systems with an inter-

face between electronics and mechanical subsystems. These are ubiquitous: manu-
facturing plants, power plants, vehicles, robots, consumer products, anythingwith a
motor—all include electromechanical systems. In (part:modeling_other_systems),
we will consider more types of systems (e.g., fluid and thermal) and their
interactions.
Electromechanical systems analysis can proceed with initially separate modeling

of the electronic and mechanical subsystems, then, through an unholy union, com-
bining their equations and attempting a solution. This is fine for simple systems.
However, many systems will require a systematic approach.
We adopt a systematic approach that draws linear graphs (á la graph theory) for

electronic and mechanical systems that are intentionally analogous to electronic cir-
cuit diagrams. This allows us to use a single graphical diagram to express a system’s
composition and interconnections. Virtually every technique from electronic circuit
analysis can be applied to these representations. Elemental equations, Kirchhoff’s
laws, impedance—eachwill be generalized. In (part:modeling_other_systems), this
same graphical and electronic-analog technique will be extended to other energy
domains.

https://sys.ricopic.one/cg
https://sys.ricopic.one/cg

10 Chapter 1

1.2 State-Determined Systems LINK
JM

A system is defined to be a collection of objects and their relations
contained within a boundary. The collection of those objects that are
external to the system and yet interact with it is called the environment. System
variables are variables that represent the behavior of the system, both those that
are internal to the system and those that are external—that is, with the system’s
environment.
There are three important classes of system variable, all typically expressed as

vector-valued functions of time C, conventionally all expressed as column-vectors
(and called “vectors” even though they’re vector-valued functions …because noth-
ing makes sense and we’re all going to die). Consider figure 1.5 for the following
definitions. Input variables are system variables that do not depend on the internal
dynamics of the system; for a system with A input variables, the “input vector” is
a vector-valued function u :R→RA . The environment prescribes inputs, making
them independent variables. Conversely, output variables are system variables of
interest to the designer; for a system with < output variables, the “output vector” is
a vector-valued function y :R→R< . Outputs may or may not directly interact with
the environment. Finally, a minimal set of variables that define the internal state of
the system are defined as the state variables; for a system with = state variables,
the “state vector” is a vector-valued function x :R→R= .

Figure 1.5. Illustration of a system and its environment.

We consider a very common class of system: those that are state-determined,
which are those for which (Rowell1997)

1. a mathematical description,
2. the state at time C0, called the initial condition x(C)|C=C0 , and
3. the input u for all time C ≥ C0

https://sys.ricopic.one/jm
https://sys.ricopic.one/jm

Introduction 11

are necessary and sufficient conditions to determine x(C) (and therefore y(C)) for
all C ≥ C0.
The “mathematical description” of the system requires a set of primitive elements

be assigned to represent its internal and external interactions. The equations derive
from two key types of mathematical relationships:

1. the input-output behavior of each primitive element and
2. the topology of interconnections among elements.

The former generate elemental equations and the latter, continuity or compati-

bility equations.

Example 1.1

In the RC circuit shown, let+B be a source and E> the voltage of interest. Identify

1. the system boundary,
2. the input vector,
3. the output vector,
4. a state vector,
5. an elemental equation,
6. and which equations might be continuity or compatibility equations.

+
−+B

' 8'

�

8�

+

−

E>

1. Everything but +B and E> .
2. u(C)=

[
+B(C)

]
.

3. y(C)=
[
E>(C)

]
.

4. There is no unique answer, but it turns out the minimimum number of
variables that describe the state of an =th order system is =. E� is a good
choice in this case. So x(C)=

[
E�(C)

]
.

5. For instance, E' = 8''.
6. Because they deal with the topology and interconnections of the elements,

KCL and KVL are the continuity and compatibility equations.

12 Chapter 1

1.3 Energy, Power, and Lumping LINK
PT

The law of energy conservation states that, for an isolated system,
the total energy remains constant. Let ℰ :R→R be the function of
time representing the total energy in a system and P :R→R be the function of time
representing power into the system, defined as

P(C)= 3ℰ(C)
3C

.

The energy in a system can change if it exchanges energy with its environment. We
consider this exchange to occur through a finite number of ports, each of which can
supplies or removes energy (positive or negative power), as in figure 1.6. This is
expressed in an equation for power into a port P8 and # ports as

P(C)=
#∑
8=1

P8(C).

We construct our systems such that they have no internal energy sources.

1.3.1 Lumping

We have assumed power enters a system via a finite number of ports. Similarly, we
assume the energy in a system is stored in a finite number " of distinct elements
with energy ℰ8 such that

ℰ(C)=
"∑
8=1

ℰ8(C).

We call these elements energy storage elements. Energy can also be dissipated from
the system via certain elements called energy dissipative elements.

Figure 1.6. System ports.

https://sys.ricopic.one/pt
https://sys.ricopic.one/pt

Introduction 13

Considering a system to have a finite number of elements, as we have done,
requires a specific kind of abstraction from real systems. A familiar example is the
“point mass” of elementary mechanics. We say it interacts with its environment
via specific connections called ports (maybe it’s attached to a spring element) and
behaves a certain way in these interactions (for a mass element, Newton’s second
law). We do not often encounter an object that behaves as if it has mass, but no
volume. Yet, this is a useful abstraction for many problems.
When we abstract like this, considering an object to be described fully as a dis-

crete object with interaction ports, we are said to be lumped-parameter modeling.
This is often contrasted with distributed or continuous modeling, which consider
the element in greater detail. For instance, an object might be considered to be
distributed through space and perhaps be flexible or behave as a fluid.
It is lumped-parameter modeling because we typically define a parameter that

governs the behavior of the element, such as resistance or mass. This parameter
will enter the system’s dynamics via an elemental equation such as Ohm’s Law in
the case of a resistor or Newton’s Second Law in the case of a mass.
Determining if lumped-parameter modeling is proper for a given system is

dependent on the type of insight one wants to acheive about the system. The
system itself does not prescribe the proper modeling technique, but the desired
understanding does. Every system is incredibly complex in its behavior, if one
considers it at a fine-granularity. In this light, it is striking that simple models work
at all. Nevertheless, lumping is highly effective for many analyses.
It is important to note that lumped-parameter models can be applied at different

levels of granularity for the same system. Finite element modeling can use a large
number of small lumped-parameter model elements to approximate a continuous
model. Such applications are beyond the scope of this course.

1.4 Mechanical Translational Elements LINK
RG

We now introduce a few lumped-parameter elements for mechanical
systems in translational (i.e. straight-line) motion. Newton’s laws of
motion can be applied. Let a force 5 and velocity E be input to a port in amechanical
translational element. Since, for mechanical systems, the power into the element is

P(C)= 5 (C)E(C)
we call 5 and E thepower-flowvariables formechanical translational systems. Some
mechanical translational elements have two distinct locations between which its
velocity is defined (e.g., the velocity across a spring’s two ends) and other elements
have just one (e.g., a point-mass), the velocity of which must have an inertial frame
of reference. This is analogous to how a point in a circuit can be said to have a

https://sys.ricopic.one/rg
https://sys.ricopic.one/rg

14 Chapter 1

voltage—by which we mean “relative to ground.” In fact, we call this mechanical
translational inertial reference ground.
Work done on the system over the time interval [0,)] is defined as

, ≡
ˆ)

0
P(�)3�.

Therefore, the work done on a mechanical system is

, =

ˆ)

0
5 (�)E(�)3�.

The linear displacement G is

G(C)=
ˆ C

0
E(�)3�+ G(0).

Similarly, the linear momentum is

?(C)=
ˆ C

0
5 (�)3�+ ?(0).

We now consider two elements that can store energy, called energy storage

elements; an element that can dissipate energy to a system’s environment, called an
energy dissipative element; and two elements that can supply power from outside
a system, called source elements.

1.4.1 Translational Springs

A translational spring is defined as an element for which the displacement G across
it is a monotonic function of the force 5 through it. A linear translational spring is
a spring for which Hooke’s law applies; that is, for which

5 (C)= :G(C),
where 5 is the force through the spring and G is the displacement across the spring,
minus its unstretched length, and : is called the spring constant and is typically a
function of the material properties and geometry of the element. This is called the
element’s constitutive equation because it constitutes what it means to be a spring.

:

E1 E2

5 5

Figure 1.7. Schematic symbol for a spring with spring constant : and velocity drop
E = E1 − E2.

Introduction 15

Although there are many examples of nonlinear springs, we can often use a linear
model for analysis in some operating regime. The elemental equation for a linear
spring can be found by time-differentiating section 1.4.1 to obtain

35

3C
= :E.

We call this the elemental equation because it relates the element’s power-flow
variables 5 and E.
A spring stores energy as elastic potential energy, making it an energy storage

element. The amount of energy it stores depends on the force it applies. For a linear
spring,

ℰ(C)= 1
2:
5 (C)2.

1.4.2 Point-Masses

A non-relativistic translational point-mass element with mass <, velocity E (relative
to an inertial reference frame), and momentum ? has the constitutive equation

? =<E.

<

E2 E1

5

Figure 1.8. Schematic symbol for a point-masswithmass< and velocity drop E = E1 − E2,
where E2 is the constant reference velocity.

Once again, time-differentiating the constitutive equation gives us the elemental
equation:

3E

3C
=

1
<
5 ,

which is just Newton’s second law.
Point-masses can store energy (making them energy storage elements) in gravita-

tional potential energy or, as will be much more useful in our analyses, in kinetic
energy

ℰ(C)= 1
2
<E2.

16 Chapter 1

1.4.3 Dampers

�

E1 E2

5 5

Figure 1.9. Schematic symbol for a damper with damping coefficient � and velocity
drop E = E1 − E2.

Dampers are defined as elements for which the force 5 through the element is a
monotonic function of the velocity E across it. Linear dampers have constitutive
equation (and, it turns out, elemental equation)

5 = �E

where � is called the damping coefficient. Linear damping is often called viscous

damping because systems that push viscous fluid through small orifices or those
that have lubricated sliding are well-approximated by this equation. For this reason,
a damper is typically schematically depicted as a dashpot.
Linear damping is a reasonable approximation of lubricated sliding, but it is

rather poor for dry friction or Coulomb friction, forces for which are not very
velocity-dependent. Aerodynamic drag is quite velocity-dependent, but is rather
nonlinear, often represented as

5 = 2 |E |E
where 2 is called the drag constant.
Dampers dissipate energy from the system (typically to heat), making them energy

dissipative elements.

1.4.4 Force and Velocity Sources

An ideal force source is an element that provides arbitrary energy to a system via
an independent (of the system) force. The corresponding velocity across the element
depends on the system.
An ideal velocity source is an element that provides arbitrary energy to a system

via an independent (of the system) velocity. The corresponding force through the
element depends on the system.

Introduction 17

1.5 Mechanical Rotational Elements LINK
VX

We now introduce a few lumped-parameter elements for mechani-
cal systems in rotational motion. Newton’s laws of motion, in their
angular analogs, can be applied. Let a torque) and angular velocity Ω be input to
a port in a mechanical rotational element. Since, for mechanical rotational systems,
the power into the element is

P(C)=)(C)Ω(C)
we call) and Ω the power-flow variables for mechanical rotational systems. Some
mechanical rotational elements have two distinct locations between which its angu-
lar velocity is defined (e.g., the angular velocity across a spring’s two ends) and
other elements have just one (e.g., a rotational inertia), the velocity of which must
have an inertial frame of reference. This is analogous to how a point in a circuit can
be said to have a voltage—by which we mean “relative to ground.” In fact, we call
this mechanical rotational inertial reference ground.
Work done on the system over the time interval [0, C 5] is defined as

, ≡
ˆ C 5

0
P(�)3�.

Therefore, the work done on a mechanical system is

, =

ˆ C 5

0
)(�)Ω(�)3�.

The angular displacement � is

�(C)=
ˆ C

0
Ω(�)3�+�(0).

Similarly, the angular momentum is

ℎ(C)=
ˆ C

0
)(�)3�+ ℎ(0).

We now consider two elements that can store energy, called energy storage

elements; an element that can dissipate energy to a system’s environment, called an
energy dissipative element; and two elements that can supply power from outside
a system, called source elements.

https://sys.ricopic.one/vx
https://sys.ricopic.one/vx

18 Chapter 1

1.5.1 Rotational Springs

A rotational spring is defined as an element for which the angular displacement
� across it is a monotonic function of the torque) through it. A linear rotational

spring is a rotational spring for which the angular form of Hooke’s law applies;
that is, for which

)(C)= :�(C),
where) is the torque through the spring and � is the angular displacement across
the spring and : is called the torsional spring constant and is typically a function
of the material properties and geometry of the element. This is called the element’s
constitutive equation because it constitutes what it means to be a rotational spring.

:
Ω1

)

Ω2

)

Figure 1.10. Schematic symbol for a spring with spring constant : and angular velocity
drop Ω=Ω1 −Ω2.

Although there are many examples of nonlinear springs, we can often use a linear
model for analysis in some operating regime. The elemental equation for a linear
spring can be found by time-differentiating section 1.5.1 to obtain

3)

3C
= :Ω.

We call this the elemental equation because it relates the element’s power-flow
variables) and Ω.
A rotational spring stores energy as elastic potential energy, making it an energy

storage element. The amount of energy it stores depends on the torque it applies. For
a linear rotational spring,

ℰ(C)= 1
2:
)(C)2.

1.5.2 Moments of Inertia

Amoment of inertia element with moment of inertia �, angular velocityΩ (relative
to an inertial reference frame), and angular momentum ℎ has the constitutive
equation

ℎ = �Ω.

Introduction 19

�

Ω2

ref

Ω1

)

Figure 1.11. Schematic symbol for a moment of inertia with inertia � and velocity drop
Ω=Ω1 −Ω2, where Ω2 is a constant reference velocity.

Once again, time-differentiating the constitutive equation gives us the elemental
equation:

3Ω

3C
=

1
�
),

which is just the angular version of Newton’s second law.
Any rotating element with mass can be considered as a lumped-inertia element.

The flywheel is the quintessential example. Flywheels store energy in their angular
momentum, with the expression

ℰ(C)= 1
2
�Ω2 ,

making them (and all moments of inertia) energy storage elements.

1.5.3 Rotational Dampers

�Ω1

)

Ω2

)

�Ω

))

Figure 1.12. Schematic symbol for a drag cup (above) and bearing (below) with damping
coefficient �. For the drag cup, the angular velocity drop is Ω=Ω1 −Ω2 and for the
bearing, Ω is referenced to ground.

Rotational dampers are defined as elements for which the torque) through the
element is amonotonic function of the angular velocityΩ across it. Linear rotational
dampers have constitutive equation (and, it turns out, elemental equation)

) = �Ω

where � is called the torsional damping coefficient. Linear torsional damping is
often called torsional viscous damping because systems that push viscous fluid
through small orifices or those that have lubricated bearings are well-approximated
by this equation. For this reason, a damper is typically schematically depicted as a
drag cup or as a bearing, both of which are shown in figure 1.12.

20 Chapter 1

Linear damping is a reasonable approximation of lubricated sliding, but it is
rather poor for dry friction or Coulomb friction, forces for which are not very
velocity-dependent.
Rotational dampers dissipate energy from the system (typically to heat), making

them energy dissipative elements.

1.5.4 Torque and Angular Velocity Sources

An ideal torque source is an element that provides arbitrary energy to a system via
an independent (of the system) torque. The corresponding angular velocity across
the element depends on the system.
An ideal angular velocity source is an element that provides arbitrary energy to

a system via an independent (of the system) angular velocity. The corresponding
torque through the element depends on the system.

1.6 Electronic Elements LINK
WW

We now review a few lumped-parameter elements for electronic sys-
tems. Let a current 8 and voltage E be input to a port in an electronic
element. Since, for electronic system, the power into the element is

%(C)= 8(C)E(C)
we call 8 and E the power-flow variables. Voltage is always understood to be
between two points in a circuit. If only one point is included, the voltage is implicitly
relative to a reference voltage, called ground.
Themagnetic flux linkage � is

�(C)=
ˆ C

0
E(�)3�+�(0).

Similarly, the charge is

@(C)=
ˆ C

0
8(�)3�+ @(0).

We now consider two elements that can store energy, called energy storage

elements; an element that can dissipate energy to a system’s environment, called an
energy dissipative element; and two elements that can supply power from outside
a system, called source elements.

https://sys.ricopic.one/ww
https://sys.ricopic.one/ww

Introduction 21

1.6.1 Capacitors

Capacitors have two terminal and are composed of two conductive surfaces sep-
arated by some distance. One surface has charge @ and the other −@. A capacitor
stores energy in an electric field between the surfaces.
Let a capacitor with voltage E across it and charge @ be characterized by the

parameter capacitance �, where the constitutive equation is

@ =�E.

The capacitance has derived SI unit farad (F), where F=A · s/V. A farad is actually
quite a lot of capacitance. Most capacitors have capacitances best represented in �F,
nF, and pF.
The time-derivative of this equation yields the E-8 relationship (what we call the

“elemental equation”) for capacitors.

3E

3C
=

1
�
8

Capacitors allow us to build many new types of circuits: filtering, energy storage,
resonant, blocking (blocks dc-component), and bypassing (draws ac-component to
ground).
Capacitors come in a number of varieties, with those with the largest capacity

(and least expensive) being electrolytic and most common being ceramic. There are
two functional varieties of capacitors: bipolar and polarized, with circuit diagram
symbols shown in figure 1.13. Polarized capacitors can have voltage drop across in
only one direction, from anode (+) to cathode (−)—otherwise they are damaged
or may explode. Electrolytic capacitors are polarized and ceramic capacitors are
bipolar.

�

(a) bipolar
capacitor.

�

−+

(b) polarized
capacitor

Figure 1.13. Capacitor circuit diagram symbols.

So what if you need a high-capacitance bipolar capacitor? Here’s a trick: place
identical high-capacity polarized capacitors cathode-to-cathode. What results is
effectively a bipolar capacitor with capacitance half that of one of the polarized
capacitors.

22 Chapter 1

1.6.2 Inductors

A pure inductor is defined as an element in which flux linkage �—the integral
of the voltage—across the inductor is a monotonic function of the current 8. An
ideal inductor is such that this monotonic function is linear, with slope called the
inductance !; i.e. the ideal constitutive equation is

�= !8

The units of inductance are the SI derived unit henry (H). Most inductors have
inductance best represented in mH or �H.
The elemental equation for an inductor is found by taking the time-derivative of

the constitutive equation.

38

3C
=

1
!
E

Inductors store energy in a magnetic field. It is important to notice how inductors
are, in a sense, the opposite of capacitors. A capacitor’s current is proportional to the
time rate of change of its voltage. An inductor’s voltage is proportional to the time
rate of change of its current.
Inductors are usually made of wire coiled into a number of turns. The geometry

of the coil determines its inductance !.
Often, a corematerial—such as iron and ferrite—is included by wrapping the

wire around the core. This increases the inductance !.
Inductors are used extensively in radio-frequency (rf) circuits, which we won’t

discuss in this text. However, they play important roles in ac-dc conversion, filtering,
and transformers—all of which we will consider extensively.
The circuit diagram for an inductor is shown in figure 1.14.

!

Figure 1.14. Inductor circuit diagram symbol.

Introduction 23

1.6.3 Resistors

Resistors dissipate energy from the system, converting electrical energy to thermal
energy (heat). The constitutive equation for an ideal resistor is

E = 8'.

This is already in terms of power variables, so it is also the elemental equation.

'

Figure 1.15. Resistor circuit diagram symbol.

1.6.4 Sources

Sources (i.e., supplies) supply power to a circuit. There are two primary types:
voltage sources and current sources.

1.6.4.1 Ideal Voltage Sources An ideal voltage source provides exactly the volt-
age a user specifies, independent of the circuit to which it is connected. All it must
do in order to achieve this is to supply whatever current necessary.

1.6.4.2 Ideal Current Sources An ideal current source provides exactly the cur-
rent a user specifies, independent of the circuit to which it is connected. All it must
do in order to achieve this is to supply whatever voltage necessary.

1.6.4.3 Modeling Real Sources No real source can produce infinite power. Some
have feedback that controls the output within some finite power range. These types
of sources can be approximated as ideal when operating within its specifications.
Many voltage sources (e.g., batteries) do not have internal feedback controlling the
voltage. When these sources are “loaded” (delivering power) they cannot maintain
their nominal output, be that voltage or current. We model these types of sources
as ideal sources in series or parallel with a resistor, as illustrated in figure 1.16.

24 Chapter 1

(a) real voltage source model. (b) real current source model.

Figure 1.16. Models for power-limited “real” sources.

Most manufacturers specify the nominal resistance of a source as the “output
resistance.” A typical value is 50 Ω.

1.7 Generalized Through- and Across-Variables LINK
B4

We have considered mechanical translational, mechanical rotational,
and electronic systems—which we refer to as different energy
domains. There are analogies among these systems that allow for generalizations of
certain aspects of these systems. These generalizations will allow us to use a single
framework for unifying the analysis of these (and other) dynamic systems.
There are two important classes of variables common to lumped-parameter

dynamic systems: across-variables and through-variables.
An across-variable is one that makes reference to two nodes of a system element.

For instance, the following are across-variables:

• voltage E,
• velocity E, and
• angular velocity Ω.

We denote a generalized across-variable asV.
A through-variable is one that represents a quantity that passes through a system

element. For instance, the following are through-variables:

• current 8,
• force 5 , and
• torque).

We denote a generalized through-variable as ℱ .
The generalized integrated across-variable X is

X =

ˆ C

0
V(�)3�+X(0).

https://sys.ricopic.one/b4
https://sys.ricopic.one/b4

Introduction 25

The generalized integrated through-variableℋ is

ℋ =

ˆ C

0
ℱ (�)3�+ℋ(0).

For mechanical and electronic systems, power P passing through a lumped-
parameter element is

P(C)=ℱ (C)V(C).
These generalized across- and through-variables are sometimes used in analysis.

However, the key idea here is that there are two classes of power-flow variables:
across and through. These two classes allow us to strengthen the sense in which we
consider different dynamic systems to be analogous.

1.8 Generalized One-Port Elements LINK
SS

We can categorize the behavior of one-port elements—electronic,
mechanical translational, andmechanical rotational—considered thus
far. In the following sections, we consider two types of energy storage elements,
dissipative elements, and source elements.

1.8.1 A-Type Energy Storage Elements

An element that stores energy as a function of its across-variable is called an A-type
energy storage element. Sometimes we call it a generalized capacitor because a
capacitor is an A-type energy storage element.
For generalized through-variable ℱ , across-variable V, integrated through-

variableℋ , and integrated across-variable - the ideal, linear constitutive equation
is

ℋ =�V
for � ∈R called the generalized capacitance. Differentiating section 1.8.1 with
respect to time, the elemental equation is

3V
3C

=
1
�
ℱ .

A-type energy storage elements considered thus far are capacitors, translational
masses, and rotational moments of inertia. As with generalized variables, the
analogs among elements are more important than are generalized A-type energy
storage elements.

https://sys.ricopic.one/ss
https://sys.ricopic.one/ss

26 Chapter 1

1.8.2 T-Type Energy Storage Elements

An element that stores energy as a function of its through-variable is called a T-type
energy storage element. Sometimes we call it a generalized inductor because an
inductor is a T-type energy storage element.
The ideal, linear constitutive equation is

X = !ℱ
for ! ∈R called the generalized inductance. Differentiating section 1.8.2with respect
to time, the elemental equation is

3ℱ
3C

=
1
!
V .

T-type energy storage elements considered thus far are inductors, translational
springs, and rotational springs. As with generalized variables, the analogs among
elements are more important than are generalized T-type energy storage elements.

1.8.3 D-Type Energy Dissipative Elements

An element that dissipates energy from the system and has an algebraic relationship
between its through-variable and its across-variable is called a D-type energy

dissipative element. Sometimes we call it a generalized resistor because a resistor
is a D-type energy dissipative element.
The ideal, linear constitutive and elemental equation is

V ='ℱ
for ' ∈R called the generalized resistance.
D-type energy dissipative elements considered thus far are resistors, transla-

tional dampers, and rotational dampers. As with generalized variables, the analogs
among elements are more important than are generalized D-type energy dissipative
elements.

1.8.4 Sources

An ideal through-variable source is an element that provides arbitrary energy to a
system via an independent (of the system) through-variable. The corresponding
across-variable depends on the system. Current, force, and torque sources are the
through-variable sources considered thus far.
An ideal across-variable source is an element that provides arbitrary energy

to a system via an independent (of the system) across-variable. The correspond-
ing through-variable depends on the system. Voltage, translational velocity, and
angular velocity are the across-variable sources considered thus far.

Introduction 27

1.9 Problems LINK
71

Problem 1.1 LINKMADRID Consider the drivetrain of a standard internal combustion
engine vehicle. When accelerating from a stop in wet weather it is common for the
wheels to slip due to a film of water between the wheels and the road. Develop a
lumped parameter model of this system with the following assumptions,

• the engine and transmission together can be simulated as a torque source,
• the transmission andwheels are connected with a drive shaft of finite stiffness,
and

• each wheel has equal mass.

From this description please,

1. draw a one dimensional lumped parameter model (like the diagrams in
problem granda), and

2. draw a linear graph of the lumped parameter model.

https://sys.ricopic.one/71
https://sys.ricopic.one/71
https://sys.ricopic.one/madrid

2 Linear Graph Models LINK
IU

This chapter introduces linear graph modeling.

2.1 Introduction to Linear Graphs LINK
YR

Engineers often use graphical techniques to aid in analysis and design.
We will use linear graphs to represent the topology or structure of a
system modeled as interconnected lumped elements.
This represents to us the essential structure of the system in a minimalist form.

In this way, it is like Massimo Vignelli’s famous 1972 New York subway system
“map,” which inspired widespread adoption of his style (see figure 2.1).1 Besides
minimalism, the key idea in Vignelli subway maps is that the details of the tunnels’
paths are irrelevant and, in fact, distracting to the person attempting to get from
one station to another.

1. Vignelli was a brilliant Minimalist designer of many prodcucts, from dishes to clothing, but he was
most known for his graphic design. Great places to start studying Vignelli are the documentary Design
is One (2012) and The Vignelli Canon.

https://sys.ricopic.one/iu
https://sys.ricopic.one/iu
https://sys.ricopic.one/yr
https://sys.ricopic.one/yr
http://www.imdb.com/title/tt2610862/
http://www.imdb.com/title/tt2610862/
http://www.vignelli.com/canon.pdf

30 Chapter 2

Q72 BUS TO LGA

Q48 BUS TO LGA

Q48 BUS TO LGA

Q48 BUS TO LGA

Q70 SBS TO LGA

M60 SBS TO LGA

M60 SBS TO LGA
M60 SBS TO LGAM60 SBS

TO LGA

M60 SBS

TO LGA

Q72 BUS

TO LGA

Q3 BUS

TO JFK

Q10 BUS

TO JFK

Q10 BUS

TO JFK

Q10

BUS

TO JFK

B15

BUS

TO JFK

L N Q R W

 N Q R W
 1 2 3 7

 7

LGA Airport

JFK Airport

Q70 SBS TO LGA
Q47 BUS TO LGA

Mets-Willets Point

Figure 2.1. A modern New York subway map in the style of Vignelli (Jake Berman).

In a similar way, a linear graph represents the system in a minimalist style, with
only two types of objects:

1. A set of edges, each of which represents an energy port associated with a
system element. Each edge is drawn as an oriented line segment “ ”.

2. A set of nodes, each of which represents a point of interconnction among
system elements. Each node is drawn as a dot “ ”.

https://en.wikipedia.org/wiki/File:NYC_subway-4D.svg
maps.complutense.org

Linear Graph Models 31

Vref V1

node

V2

node
ℱ

edge

Figure 2.2. An edge with nodes. The across variable isV =V1 −V2.

All edges begin and end at nodes. The nodes represent locations in the system
where distinct across-variable values may be measured. For example, wires that
connect elements are actually nodes at which voltage may be measured. Putting an
edge together with nodes, we have figure 2.2.
It is important to note that linear graphs can represent nonlinear system

elements—the name is a reference to the lines used.
It is common to choose a node of the graph as the reference node, to which all

across-variables are referenced. Due to its similarity to the electronic ground, we
often use these terms interchangeably.
Figure 2.3 shows how a linear graph can be constructed for a simple RC-circuit.

Note that the wires become nodes, the elements become edges, and the reference
node represents the circuit ground. In a similar manner, we will construct linear
graphs of circuits, mechanical translational systems, and mechanical rotational
systems.

+B

'

�

(a)

+
−+B

'

�

(b)

Figure 2.3. An example of a linear graph representation of an RC-circuit.

Note that the linear graph is a topological representation of the system. It does
not contain any information about the values of the system elements, only their
interconnections. This is similar to the Vignelli subwaymap, which does not contain
accurate information about the distances between stations, only the connections
among them.

32 Chapter 2

2.2 Sign Convention LINK
BM

The sign (positive or negative) of a variable is used to represent an
orientation of its physical quantity. For instance, −3m/s couldmean 3
m/s to the right or left. No one can say which is better (right is better). Deciding how
the physical quantity corresponds to the sign of the variable is called sign assign-

ment. When we use a sign convention, we make the assignment in a conventional
manner. For instance, the sign convention for normal stress is that compression is
negative and tension is positive.
Why use a sign convention? If we follow a convention when constructing a

problem, we can use the convention’s interpretation of the result. For complicated
systems, this helps us keep things straight. Furthermore, if someone else attempts
to understand our work, it is much easier to simply say “using the standard sign
convention, …” than explaining our own snowflake sign assignment. However, it
is nonetheless true that we can assign signs arbitrarily.
Arbitrary? Vive la revolution! But wait. If a source is present, we must observe

some caution. A source typically comes with its own convention. For instance, if we
hook up a power supply to the circuit with the + and − leads a certain way, unless
we want to get very confused, we should probably accommodate that sign.
A sign convention for each of the energy domains we’ve considered follows.

2.2.1 Electronic Systems

We use the passive sign convention of electrical engineering, defined below.

Definition 2.1

Power flowing in to a component is considered to be positive and power flowing
out of a component is considered negative.

ground

8 E
drop

(a)

8 E
drop

(b)

8 E
drop

(c)

8 E
drop

(d)

Figure 2.4. Passive sign convention for electronic systems in terms of voltage E and
current 8. Passive elements are on the left, active on the right.

https://sys.ricopic.one/bm
https://sys.ricopic.one/bm

Linear Graph Models 33

Because power P = E8, this implies the current and voltage signs are prescribed
by the convention. For passive elements, the electrical potential must drop in the
direction of positive current flow. This means the assumed direction of voltage drop
across a passive element must be the same as that of the current flow. For active
elements, which supply power to the circuit, the converse is true: the voltage drop
and current flow must be in opposite directions. figure 2.4 illustrates the possible
configurations.
When drawing a linear graph of a circuit, for each passive element’s edge, draw

the arrow beside it pointing in the direction of assumed current flow and voltage
drop.
The purpose of a sign convention is to help us interpret the signs of our results.

For instance, if, at a given instant, a capacitor has voltage E� = 3 V and current
8� =−2 A, we compute P� =−6 W and we know 6 W of power is flowing from the
capacitor into the circuit.
For passive elements, there is no preferred direction of “assumed” voltage drop

and current flow. If a voltage or current value discovered by performing a circuit
analysis is positive, this means the “assumed” and “actual” directions are the same.
For a negative value, the directions are opposite.
For active elements, choose the sign in accordance with the physical situation.

For instance, if a positive terminal of a battery is connected to a certain terminal
in a circuit, it ill behooves one to simply say “but Darling, I’m going to call that
negative.” It’s positive whether you like it or not, Nancy.

2.2.2 Translational Mechanical Systems

<
�B

The following steps can be applied to any translational mechanical system. We
introduce the convention with an inline example. Consider the simple mechanical
system shown at right.

<
�B

Assign the sign by drawing a coordinate arrow, as shown at right. The direction
of the arrow is arbitrary, however, if possible, assign the positive direction to match
the sources. If the problem allows, it is best practice to have all sources and the
coordinate arrow in the same direction.

34 Chapter 2

�B

<

:

There are two nodes with distinct velocities: ground and the mass, as shown at
right. The mass node is always drawn to ground. The spring connects between the
mass and ground. Finally, the force source connects to the mass, where it is applied,
and also connects to ground, which is impervious to it.

�B

<

:

On each spring and damper element, define the positive velocity drop and edge
arrow to be in the direction of the coordinate arrow.

+B

<

:

On each mass element, define the positive velocity drop and edge arrow to be
toward ground. Sometimes we dash the latter half of the mass edge in to signify that
it is “virtually” connected to ground.

+B

<

:

On each force source element, define the positive direction as follows.
(ideal) If the force source has the same definition of positive as your coordinate
arrows, draw it toward the node of application.
(if needed) If the force source has the oppositedefinition of positive as your coordinate
arrow, draw it away from the node of application.

Linear Graph Models 35

+B

<

:

On each velocity source element, define the positive direction as follows. (ideal)
If the velocity source has the same definition of positive as your coordinate arrows,
draw it away from the node of application. (if needed) If the velocity source has the
opposite definition of positive as your coordinate arrow, draw it toward the node of
application.
This convention yields the interpretations of the following table.

force 5 velocity E

positive + negative − positive + negative −
< force in direction of

the coordinate arrow
force opposite the direc-
tion of the coordinate
arrow

velocity in the coordi-
nate arrow direction

velocity opposite the
coordinate arrow
direction

: compressive force tensile force velocity drops in the
coordinate arrow
direction

velocity drops opposite
the coordinate arrow
direction

� compressive force tensile force velocity drops in the
coordinate arrow
direction

velocity drops opposite
the coordinate arrow
direction

Example 2.1

For the system shown, draw a linear graph and assign signs according to the
sign convention.

<2<1

�2
:

�1

�B

linear graph

36 Chapter 2

2.2.3 Rotational Mechanical Systems

�
)B

The following steps can be applied to any rotational mechanical system. We
introduce the convention with an inline example. Consider the simple system
shown at right.

�
)B

Assign the sign by drawing a coordinate arrow, as shown at right. The direction
of the arrow is arbitrary, however, if possible, assign the positive direction to match
the sources. If the problem allows, it is best practice to have all sources and the
coordinate arrow in the same direction. The right-hand rule is always implied.

)B

�

:

There are two nodes with distinct velocities: ground and the inertia, as shown at
right. The inertia node is always drawn to ground. The spring connects between
the inertia and ground. Finally, the torque source connects to the mass, where it is
applied, and also connects to ground, which is impervious to it.

)B

�

:

On each inline spring and damper element, define the positive velocity drop and
edge arrow to be in the direction of the coordinate arrow. Springs and dampers that
aren’t inline typically connect to ground, toward which edge arrows should point.

ΩB

�

:

Linear Graph Models 37

On each inertia element, define the positive angular velocity drop and edge arrow
to be toward ground. Sometimes we dash the latter half of the inertia edge to signify
that it is “virtually” connected to ground.

ΩB

�

:

On each torque source element, define the positive direction as follows. (ideal)
If the torque source has the same definition of positive as your coordinate arrows,
draw it toward the node of application.
(if needed) If the torque source has the opposite definition of positive as your
coordinate arrow, draw it away from the node of application.

ΩB

�

:

On each angular velocity source element, define the positive direction as follows.
(ideal) If the source has the same definition of positive as your coordinate arrows,
draw it away from the node of application.
(if needed) If the source has the opposite definition of positive as your coordinate
arrow, draw it toward the node of application.
This convention yields the interpretations of the following table.

38 Chapter 2

torque) angular velocity Ω

positive + negative − positive + negative −
� torque in direction of

the coordinate arrow
torque opposite the
direction of the
coordinate arrow

velocity in the coordi-
nate arrow direction

velocity opposite the
coordinate arrow
direction

: wring! wrong! velocity drops in the
coordinate arrow
direction

velocity drops opposite
the coordinate arrow
direction

� wring! wrong! velocity drops in the
coordinate arrow
direction

velocity drops opposite
the coordinate arrow
direction

Example 2.2

For the system shown, draw a linear graph and assign signs according to the
sign convention.

�1
)B

�1 �2
�2

�3 :

linear graph

uh huh

Linear Graph Models 39

2.3 Element Interconnection Laws LINK
DA

The interconnections among elements constrain across- and through-
variable relationships. The first element interconnection law requires
the concept of a contour “ ”: a closed path that does not self-intersect superim-
posed over the linear graph. The first interconnection law is called the continuity
law.

Definition 2.2

The sum of the through-variables that flow on into a contour on a linear graph
is zero, or, in terms of generalized through-variables ℱ8 for # elements with
through variables defined as positive into the contour,

#∑
8=1

ℱ8 = 0.

Contours can enclose any number of nodes and edges, as illustrated in figure 2.5.
Kirchhoff’s current law (KCL) is the special case of the continuity law for electronic
systems.

(

1

2

3

−ℱ1 − ℱ2 − ℱ(= 0

(a)

(

1

2

3

−ℱ(− ℱ3 = 0

(b)

(

1

2

3

ℱ1 + ℱ2 + ℱ(= 0

(c)

Figure 2.5

The second interconnection lawwe consider requires the concept of a loop “ ”:
a continuous series of edges that begin and end at the same node, not reusing any
edges.2 The second interconnection law is called the compatibility law.

2. Technically, we need not restrict the definition to series that do not reuse edges for purposes of the
compatibility law, but these loops are superfluous and we exclude them here.

https://sys.ricopic.one/da
https://sys.ricopic.one/da

40 Chapter 2

Definition 2.3

The sum of the across-variable drops on edges around any closed loop on a linear
graph is zero, or, in terms of generalized across variablesV8 for # elements in a
loop,

#∑
8=1

V8 = 0.

(

1

2

3

V1 −V2 = 0

(a)

(

1

2

3

V2 +V3 −V(= 0

(b)

(

1

2

3

V1 +V3 −V(= 0

(c)

Figure 2.6

A loop can be “inner” or “outer,” as shown in figure 2.6. Kirchhoff’s voltage law
(KVL) is the special case of the compatibility law for electronic systems.

Example 2.3

For the system shown, (a) write three unique continuity and three unique
compatibility equations. Moreover, (b) write a continuity equation solved for ℱ4

in terms of ℱ(and ℱ1. Finally, (c) write a compatibility equation solved forV5 in
terms ofV(,V3, andV4.

1

2

3

4

5

(

Linear Graph Models 41

linear graphs and more

42 Chapter 2

2.4 Systematic Linear Graph Modeling LINK
IA

A system graph is a representation of a physical system as a set of
interconnected linear graph elements. The construction of a system
graph requires a number of engineering decisions. In general, we can use the
following procedure.

1. Define the system boundary and analyze the physical system to determine
the essential features that must be included in the model, especially:

1. inputs,
2. outputs,
3. energy domains, and
4. key elements.

2. Form a schematic model of the physical system and assign schematic signs
according to the sign convention of ??.

3. Determine the necessary lumped-parameter elements representing the sys-
tem’s

1. energy sources,
2. energy storage, and
3. energy dissipation.

4. Identify the across-variables that define the linear graph nodes and draw a
set of nodes.

5. Determine appropriate nodes for each lumped element and include each
element in the graph.

6. Assign linear graph signs according to the sign convention of ??.

The first three of these steps are the hardest. Considerable physical insight is
required to construct an effective model. Often it is helpful—if not necessary—to
have experimental results to guide the process.

Example 2.4

For the system shown, develop a linear graph model.

https://sys.ricopic.one/ia
https://sys.ricopic.one/ia

Linear Graph Models 43

linear graphs

Example 2.5

For the system shown, develop a linear graph model.

linear graphs

and more

44 Chapter 2

Example 2.6

For the system shown, develop a linear graph model.

linear graph

something

Linear Graph Models 45

2.5 Problems LINK
IM

Problem 2.1 LINKPLAYMATE Consider the illustration of figure 2.7 in which a bending
plate scale is to have a heavy load placed upon it. Such scales measure the weight
of the load by measuring the strain on the sensors and electronically converting
this to the weight placed on the plate. (It goes without saying that calibration is
required for such systems.)
It takes time for the system to come to equilibrium, during which oscillation

occurs. Develop a one-dimensional lumped-parameter model of the mechanical
aspect of the system and its applied load, via the following steps.

1. Declare what you will take to be the system and its input(s).
2. Declare a one-dimensional, mechanical, lumped-parameter model for the

system. Howmight you determine the lumped-parameter model parameters
(e.g. mass, spring constant, etc.)?

3. Draw a schematic of the lumped-parameter system model.
4. Draw a linear graph corresponding to your lumped-parameter model.

load

bending plate scale

Figure 2.7. A bending plate scale with strain sensors and load.

Problem 2.2 LINKNOD Consider the illustration of figure 2.8 in which a motor is on a
machine and an instrument is atop a nearby workbench. The motor typically spins
at a fixed velocity, generating a vibration that is transmitted through the machine
and into the floor.
Suppose you are given the task of designing the feet of the instrument such that

less than a certain amount of vibratory motion from the motor will be transmitted
through the floor and workbench to the instrument.
Develop a one-dimensional lumped-parameter model of the mechanical aspect

of the system via the following steps.

1. Declare what you will take to be the system and its input(s).

https://sys.ricopic.one/im
https://sys.ricopic.one/im
https://sys.ricopic.one/playmate
https://sys.ricopic.one/nod

46 Chapter 2

2. Declare a one-dimensional, mechanical, translational, lumped-parameter
model for the system.

3. Draw a schematic of the lumped-parameter system model.
4. Draw a linear graph corresponding to your lumped-parameter model.

motor
motion

instrument

workbench

floor

feet
machine

Figure 2.8. A motor on a machine and a nearby instrument on a workbench.

Problem 2.3 LINKJOHNNYCASH Consider the illustration of figure 2.9 in which a wind
turbine is harvesting wind energy. An electrical generator converts the rotational
mechanical power into electrical energy.
Suppose you are given the task of designing the bearing and the flexible shaft

coupler assemblies. For the design, you will need to know how wind speeds will
affect the angular velocities and torques throughout the rotational mechanical
system. Therefore, you resolve to develop a dynamic system model.
Develop a one-dimensional lumped-parameter model of the mechanical aspect

of the system. Assume that the wind produces an input torque)(via the turbine
blades. Further assume that the generator draws power from the mechanical system
in a manner that produces a load torque)� that is proportional to the generator
shaft angular velocity Ω�; that is, for constant �,

)� = �Ω� .

Use the following steps:

1. Declare what you will take to be the system and its input(s).
2. Declare a one-dimensional, rotational mechanical, lumped-parameter model

for the system.
3. Draw a schematic of the lumped-parameter system model.
4. Draw a linear graph corresponding to your lumped-parameter model.

https://sys.ricopic.one/johnnycash

Linear Graph Models 47

Generator

Electrical
power

Coupler

WindBlades

Bearing

Figure 2.9. A sketch of a wind turbine.

Problem 2.4 LINKLILLIMOOMIE Finish applying the sign coordinate arrows on the
following linear graphs.

1. electronic system

https://sys.ricopic.one/lillimoomie

48 Chapter 2

+(

! '

2. rotational mechanical system (assume)(is in the positive direction)

)(

:

�

3. translational mechanical system

�(
<1

:

�<2

Problem 2.5 LINKVARIETIES Draw necessary sign coordinate arrows and a linear
graph for each of the following schematics.

1. electronic system, current source

�(

! ' �

2. rotational mechanical system, torque source

�1
)(

�1 :

�2

�2 �3

3. translational mechanical system, velocity source

https://sys.ricopic.one/varieties

Linear Graph Models 49

<2<1

�2
:2

�1

:1
+(

Problem 2.6 LINKCORMAC Draw necessary sign coordinate arrows and draw a linear
graph for each of the following schematics.

1. electronic system, voltage source

+
−+(

' !

�

2. rotational mechanical system, angular velocity source

Ω(
:1

�1

�1 :2

�2

�2 �3

3. translational mechanical system, force source

<3<2

�2
:2

�1

:1
<1

�(

Problem 2.7 LINKKURT Draw necessary sign coordinate arrows and a linear graph
for each of the following schematics.

1. electronic system, voltage source

+
−+(

' !

�2�1

2. rotational mechanical system, torque source

https://sys.ricopic.one/cormac
https://sys.ricopic.one/kurt

50 Chapter 2

�0
)(

:1

�1

�1 :2

�2

�2 �3

3. translational mechanical system, force source

<3<2

:3

�2

:2

�1

:1
<1

�(

Problem 2.8 LINKBUNKER Use the assigned coordinate arrows to draw a linear graph
for each of the following schematics.

1. electronic system, voltage and current source

+
−+(

'1 !1
�2

'4

�(

'2

!2

�1 '3

2. rotational mechanical system, torque source, coordinate arrow

�1
)(

+
�1

�2

�2:1

�3

�3

3. translational mechanical system, force sources (2)

<3<2

�(2

�2

:2

�1

:1
<1

�(1

+

https://sys.ricopic.one/bunker

3 State-Space Models LINK
W6

In this chapter, we learn to derive state-space models from linear graph models.

3.1 State Variable System Representation LINK
FC

State variables, typically denoted G8 , are members of a minimal set
of variables that completely expresses the state (or status) of a system.
All variables in the system can be expressed algebraically in terms of state variables
and input variables, typically denoted D8 .
A state-determined system model is a system for which

1. a mathematical description in terms of = state variables G8 ,
2. initial conditions G8(C0), and
3. inputs D8(C) for C ≥ C0
are sufficient conditions to determine G8(C) for all C ≥ C0. We call = the system

order.
The state, input, and output variables are all functions of time. Typically, we

construct vector-valued functions of time for each. The so-called state vector x is
actually a vector-valued function of time x :R→R= . The 8th value of x is a state
variable denoted G8 .
Similarly, the so-called input vector u is actually a vector-valued function of time

u :R→RA , where A is the number of inputs. The 8th value of u is an input variable
denoted D8 .
Finally, the so-called output vector y is actually a vector-valued function of time

y :R→R< , where< is the number of outputs. The 8th value of y is an output variable
denoted H8 .

https://sys.ricopic.one/w6
https://sys.ricopic.one/w6
https://sys.ricopic.one/fc
https://sys.ricopic.one/fc

52 Chapter 3

system with state vector

inputs outputs

(a)

system with state vector

x(C) =


G1(C)
G2(C)
...

G=(C)


u(C) =


D1(C)
D2(C)
...

DA (C)


inputs outputs

y(C) =


H1(C)
H2(C)
...

H<(C)


(b)

Figure 3.1. Block diagram of a system with input u, state x, and output y.

Most systems encountered in engineering practice can be modeled as state-
determined. For these systems, the number of state variables = is equal to the
number of independent energy storage elements.
Since to know the state vector x is to know everything about the state, the energy

stored in each element can be determined from x. Therefore, the time-derivative
3x/3C describes the power flow.
The choice of state variables represented by x is not unique. In fact, any basis

transformation yields another valid state vector. This is because, despite a vector’s
components changing when its basis is changed, a “symmetric” change also occurs
to its basis vectors. This means a vector is a coordinate-independent object, and the same
goes for vector-valued functions. This is not to say that there aren’t invalid choices
for a state vector. There are. But if a valid state vector is given in one basis, any
basis transformation yields a valid state vector.
One aspect of the state vector is invariant, however: it must always be a vector-

valued function in R= . Our method of analysis will yield a special basis for our
state vectors. Some methods yield rather unnatural state variables (e.g. the third
time-derivative of the voltage across a capacitor), but ours will yield natural state
variables (e.g. the voltage across a capacitor or the force through a spring).

State-Space Models 53

3.2 State and Output Equations LINK
00

The state x, input u, and output y vectors interact through two
equations:

3x
3C

= f (x , u , C) (3.1)

y= g(x , u , C) (3.2)

where f and g are vector-valued functions that depend on the system. Together,
they comprise what is called a state-space model of a system. Let’s not glide past
these equations, which will be our dear friends for the rest of our analytic lives.
The first equation equation (3.1) is called the state equation. Given state and input
vectors at a moment in time, it’s function f describes, how the state is changing

(i.e. 3x/3C). Clearly, the state equation is a vector differential equation, which is
equivalent to a system of first-order differential equations.1

In accordance with the definition of a state-determined system from ??, given
an initial condition x(C0) and input u, the state x is determined for all C ≥ C0. The
state-space model is precisely the “mathematical model” described in the definition
of a state-determined system. Determining the state requires the solution—analytic
or numerical—of the vector differential equation.
The second equation equation (3.2) is algebraic. It expresses how the output y can

be constructed from the state x and input u. This means we must first solve the
state equation equation (3.1). Since the output y is a vector of variables of interest,
the output equation is constructed in two steps: (1) define the output variables and
(2) write them in terms of the state variables G8 and input variables D9 .
Just becausewe know that, for a state-determined system, there exists a solution to

equation (3.1), doesn’tmeanwe knowhow to find it. In general, f :R= ×RA ×R→R=
and g :R= ×RA ×R→R< can be nonlinear functions.2 We don’t know how to solve
most nonlinear state equations analytically. An additional complication can arise
when, in addition to states and inputs, system parameters are themselves time-
varying (note the explicit time C argument of f and g). Fortunately, often a linear
model is sufficiently effective.3

A linear, time-invariant (LTI) system has state-space model

3x
3C

=�x + �u (3.3)

y=�x +�u (3.4)

1.We’ll learn how to solve such systems both analytically and numerically in later chapters.

2. Technically, since x and u are themselves functions, f and g are functionals.
3. A later lecture will describe the process of deriving a “linearized” model from a nonlinear one.

https://sys.ricopic.one/00
https://sys.ricopic.one/00

54 Chapter 3

where

• � is an = × = matrix that describes how the state x changes the state x,
• � is an = × A matrix that describes how the input u changes the state x,
• � is an < × = matrix that describes how the state x contributes to the output

y, and
• � is an < × A matrix that describes how the input D contributes to the output

y.

In the next two lectures, we will learn how to derive a state-space model—for
linear systems, how to find �, �, �, and �—for a system from its linear graph. This
is the link between the linear graph model and the state-space model.

3.3 Normal Trees LINK
IN

Before we introduce the algorithm for constructing the state-space
model in ??, we introduce the first step from the system graph to the
state-space model: the normal tree. It is a subgraph of the system’s linear graph.
In the following, we will consider a connected graph with � edges, of which (

are sources. There are 2�− (unknown across- and through-variables, so that’s how
many equations we need. We have �− (elemental equations and for the rest we
will write continuity and compatibility equations. # is the number of nodes.
The following rules must be respected.

1. There can be no loops.
2. Every node must be connected.

Form a normal tree with the following steps.

1. Include all nodes.
2. Include all across-variable sources.
3. Include as many as possible A-type elements.
4. Include as many as possible D-type elements.
5. Include as many as possible T-type elements.

We call those edges in the normal tree its branches and those not, the links.
A-type elements not in and T-type elements in the normal tree are called dependent

energy storage elements. All other A- and T-types are independent energy storage
elements. The energy in these can be independently controlled.
In order to avoid an artificial excess in state variables and construct what is called

a controllablemodel, whenever A-types in series (sharing one node) or T-types in
parallel (sharing two nodes) appear, we should combine them to form equivalent

https://sys.ricopic.one/in
https://sys.ricopic.one/in

State-Space Models 55

elements in accordance with the formulas

�4 =
1∑

8 1/�8
or (3.5)

!4 =
1∑
8 1/!8

. (3.6)

There are special names for power-flow variables associated with an element,
depending on whether the element is a branch or link. Primary variables are: across-
variables on branches and through-variables on links. Secondary variables are:
through-variables on branches and across-variables on links.

Example 3.1

For the linear graph for a circuit shown, construct a normal tree.

+B

'1 '2

�
!

+B

'1 '2

�
!

56 Chapter 3

3.4 Normal Tree to State-Space LINK
S0

At long last, we consider an algorithm to generate a state-space model
from a linear graph model. In the following, we will consider a con-
nected graph with � edges, of which (are sources (split between through-variable
sources () and across (�). There are 2�− (unknown across- and through-variables,
so that’s how many equations we need. We have �− (elemental equations and for
the rest we will write continuity and compatibility equations. # is the number of
nodes.

1. Derive 2�− (independent differential and algebraic equations from elemen-
tal, continuity, and compatibility equations.

1. Draw a normal tree.
2. Identify primary and secondary variables.
3. Select the state variables to be

across-variables on A-type branches and
through-variables on T-type links.

4. Define the state vector x, input vector u, and output vector y.
5. Write an elemental equation for each passive element.4

6. Write a continuity equation for each passive branch by drawing a con-
tour intersecting that and no other branch. Solve each for the secondary
through-variable associated with that branch.5

7. Write a compatibility equation for each passive link by temporarily
“including” it in the tree and finding the compatibility equation for the
resulting loop. Solve each for the secondary across-variable associated
with that link.6

2. Eliminate variables that are not state or input variables and their derivatives.
The following procedure is recommended.

1. Eliminate all secondary variables by substitution into the elemental
equations of the continuity and compatibility equations.

2. Reduce the resulting set of equations to = (system order) in state and
input variables, only. If not elimination, use linear algebra.

3. Write the result in standard form (equation (3.1) or equation (3.3)).
4. Express the output variables in terms of state and input variables, using

any of the elemental, continuity, or compatibility equations.
5. Write the result in standard form (equation (3.2) or equation (3.4)).

4. There will be �− (elemental equations.
5. There will be # − 1− (� independent continuity equations.
6. There will be �−# + 1− () independent compatibility equations.

https://sys.ricopic.one/s0
https://sys.ricopic.one/s0

State-Space Models 57

Example 3.2

For the electronic system shown, find a state-space model with outputs 8!, �B ,
and E'2 .

+(

'1 '2

�
!

0. Linear graph model.
Coordinate arrows are given.

+(

'1 '2

�
!

con2

con1

1a. The normal tree is shown on the linear graph.
1b.

Primary variables: +(, E� , 8!, 8'1 , E'2 .
Secondary variables: �(, 8� , E!, E'1 , 8'2 .

58 Chapter 3

1c. State variables: E� , 8! (system order = = 2).
1d. State, input, and output vectors:

x =

[
E�
8!

]
u =

[
+B

]
y=


8!
�(
E'2

 .
1e. Elemental equations.

�
3E�
3C

= 1
�
8�

!
38!
3C

= 1
!
E!

'1 8'1 = E'1/'1
'2 E'2 = 8'2'2

State-Space Models 59

1f. Continuity equations.

Branch Equation
� (con1) 8� = 8'1 − 8!
'2 (con2) 8'2 = 8!

60 Chapter 3

1g. Compatibility equations.

Link Equation
! E! =−E'2 + E�
'1 E'1 =+(− E�

2a. Eliminate secondary variables from the elemental equations.

�
3E�
3C

= 1
�

(
8'1 − 8!

)
!

38!
3C

= 1
!

(
−E'2 + E�

)
'1 8'1 = (+(− E�) /'1
'2 E'2 = 8!'2

2b. Eliminate non-state and non-input variables from the elemental equations.
In this case, 8'1 and E'2 are the only variables remaining to eliminate, and they
are already expressed as state- and input-variables! (This doesn’t always happen,
but it does pretty frequently for relatively simple systems.)

�
3E�
3C

= 1
'1�

+(− 1
'1�

E� − 1
�
8!

!
38!
3C

=− '2
!
8! + 1

!
E�

2c. Write the state equation in standard form

3x
3C

=

[−1
'1�

−1
�

1/! −'2/!

] [
E�
8!

]
+

[1
'1�

0

] [
+(

]
.

2d. Outputs in terms of states and inputs.

8! = 8! �(= 8'1 = (+(− E�)/'1 E'2 ='28!.

Note the sign for �(. This is because, for an across-variable source, we assume
the through-variable flows in the opposite direction!
2e. Output in standard form.

y=


0 1

−1/'1 0
0 '2


[
E�
8!

]
+


0

1/'1

0


[
+(

]
.

3.5 State-Space Model of a Translational Mechanical System

State-Space Models 61LINK
D7

Let’s try an example of a higher-order translational mechanical system.

Example 3.3

For the translational mechanical system shown, find a state-space model with
outputs the spring forces and mass momenta.

<2<1

:1

�1

:2

�2

+B

0. Linear graph model. Assigning the coordinate arrow in the direction of +B , we
obtain the linear graph shown.

+B

:1

�1

:2

�2
<1

<2

con1 con2

1a. The normal tree is shown on the linear graph.
1b.

Primary variables: +B , E<1 , E<2 , 5:1 , 5:2 , 5�1 , 5�2 .
Secondary variables: �B , 5<1 , 5<2 , E:1 , E:2 , E�1 , E�2 .

https://sys.ricopic.one/d7
https://sys.ricopic.one/d7

62 Chapter 3

1c. State variables: E<1 , E<2 , 5:1 , 5:2 (system order = = 4).
1d. State, input, and output vectors:

x =


E<1

E<2

5:1

5:2

 u =
[
+B

]
y=


5:1

5:2

?<1

?<2

 .
1e. Elemental equations.

<1 ¤E<1 =
1
<1
5<1

<2 ¤E<2 =
1
<2
5<2

:1 ¤5:1 = :1E:1
:2 ¤5:2 = :2E:2
�1 5�1 = �1E�1
�2 5�2 = �2E�2

State-Space Models 63

1f. Continuity equations.

Branch Equation
<1 (con1) 5<1 = 5:1 + 5�1 − 5:2 − 5�2
<2 (con2) 5<2 = 5:2 + 5�2

64 Chapter 3

1f. Compatibility equations.

Link Equation
:1 E:1 =+B − E<1
�1 E�1 =+B − E<1
:2 E:2 = E<1 − E<2
�2 E�2 = E<1 − E<2

State-Space Models 65

2a. Eliminate secondary variables from the elemental equations.

<1 ¤E<1 =
1
<1

(5:1 + 5�1 − 5:2 − 5�2)
<2 ¤E<2 =

1
<2

(5:2 + 5�2)
:1 ¤5:1 = :1(+B − E<1)
:2 ¤5:2 = :2(E<1 − E<2)
�1 5�1 = �1(+B − E<1)
�2 5�2 = �2(E<1 − E<2)

2b. Eliminate non-state and non-input variables from the elemental equations.
In this case, 5�1 and 5�2 are the only variables remaining to eliminate, and they
are already expressed as state- and input-variables!

<1

¤E<1 =
1
<1

(5:1 + �1(+B − E<1) − 5:2 − �2(E<1 − E<2))

=
−(�1 + �2)

<1
E<1 +

�2

<1
E<2 +

1
<1

5:1 +
−1
<1

5:2 +
�1

<1
+B

<2

¤E<2 =
1
<2

(5:2 + �2(E<1 − E<2))

=
�2

<2
E<1 +

−�2

<2
E<2 +

1
<2

5:2

:1

¤5:1 = :1(+B − E<1)
=−:1E<1 + :1+B

:2

¤5:2 = :2(E<1 − E<2)
= :2E<1 − :2E<2

2c. Write the state equation in standard form

¤x =


−(�1 + �2)/<1 �2/<1 1/<1 −1/<1

�2/<2 −�2/<2 0 1/<2

−:1 0 0 0
:2 −:2 0 0



E<1

E<2

5:1

5:2

 +

�1/<1

0
:1

0


[
+B

]
.

2d. Outputs in terms of states and inputs.

5:1 = 5:1 5:2 = 5:2 ?<1 =<1E<1 ?<2 =<2E<2 .

2e. Output in standard form.

y=


0 0 1 0
0 0 0 1
<1 0 0 0
0 <2 0 0



E<1

E<2

5:1

5:2

 +

0
0
0
0


[
+B

]
.

66 Chapter 3

3.6 State-Space Model of a Rotational Mechanical System LINK
ZS

Let’s try an example of a rotational mechanical system.

Example 3.4

For the rotational mechanical system shown, find a state-spacemodel
with outputs the spring torque and moment of inertia angular
momentum.

ΩB
�1

�

�2 :

0. Linear graph model. Assigning the coordinate arrow in the
direction of +B , we obtain the linear graph shown.

+B

:1

�1

:2

�2
<1

<2

con1 con2

1a. The normal tree is shown on the linear graph.
1b.

Primary variables: +B , E<1 , E<2 , 5:1 , 5:2 , 5�1 , 5�2 .
Secondary variables: �B , 5<1 , 5<2 , E:1 , E:2 , E�1 , E�2 .

https://sys.ricopic.one/zs
https://sys.ricopic.one/zs

State-Space Models 67

1c. State variables: E<1 , E<2 , 5:1 , 5:2 (system order = = 4).
1d. State, input, and output vectors:

x =


E<1

E<2

5:1

5:2

 u =
[
+B

]
y=


5:1

5:2

?<1

?<2

 .
1e. Elemental equations.

<1 ¤E<1 =
1
<1
5<1

<2 ¤E<2 =
1
<2
5<2

:1 ¤5:1 = :1E:1
:2 ¤5:2 = :2E:2
�1 5�1 = �1E�1
�2 5�2 = �2E�2

68 Chapter 3

1f. Continuity equations.

Branch Equation
<1 (con1) 5<1 = 5:1 + 5�1 − 5:2 − 5�2
<2 (con2) 5<2 = 5:2 + 5�2

State-Space Models 69

1f. Compatibility equations.

Link Equation
:1 E:1 =+B − E<1
�1 E�1 =+B − E<1
:2 E:2 = E<1 − E<2
�2 E�2 = E<1 − E<2

70 Chapter 3

2a. Eliminate secondary variables from the elemental equations.

<1 ¤E<1 =
1
<1

(5:1 + 5�1 − 5:2 − 5�2)
<2 ¤E<2 =

1
<2

(5:2 + 5�2)
:1 ¤5:1 = :1(+B − E<1)
:2 ¤5:2 = :2(E<1 − E<2)
�1 5�1 = �1(+B − E<1)
�2 5�2 = �2(E<1 − E<2)

2b. Eliminate non-state and non-input variables from the ele-
mental equations. In this case, 5�1 and 5�2 are the only variables
remaining to eliminate, and they are already expressed as state-
and input-variables!

<1

¤E<1 =
1
<1

(5:1 + �1(+B − E<1) − 5:2 − �2(E<1 − E<2))

=
−(�1 + �2)

<1
E<1 +

�2

<1
E<2 +

1
<1

5:1 +
−1
<1

5:2 +
�1

<1
+B

<2

¤E<2 =
1
<2

(5:2 + �2(E<1 − E<2))

=
�2

<2
E<1 +

−�2

<2
E<2 +

1
<2

5:2

:1

¤5:1 = :1(+B − E<1)
=−:1E<1 + :1+B

:2

¤5:2 = :2(E<1 − E<2)
= :2E<1 − :2E<2

2c. Write the state equation in standard form

¤x =


−(�1 + �2)/<1 �2/<1 1/<1 −1/<1

�2/<2 −�2/<2 0 1/<2

−:1 0 0 0
:2 −:2 0 0



E<1

E<2

5:1

5:2

 +

�1/<1

0
:1

0


[
+B

]
.

2d. Outputs in terms of states and inputs.

5:1 = 5:1 5:2 = 5:2 ?<1 =<1E<1 ?<2 =<2E<2 .

2e. Output in standard form.

y=


0 0 1 0
0 0 0 1
<1 0 0 0
0 <2 0 0



E<1

E<2

5:1

5:2

 +

0
0
0
0


[
+B

]
.

State-Space Models 71

3.7 Problems LINK
K8

Problem 3.1 LINKMETROID Draw necessary sign coordinate arrows, a linear graph, a
normal tree, and identify state variables and system order for each of the following
schematics.

1. Electrical system, current source

�(

! ' �

2. Rotational mechanical system, torque source

�1
)(

�1 :

�2

�2 �3

3. Translational mechanical system, velocity source

<2<1

�2
:2

�1

:1
+(

Problem 3.2 LINKMEGAMAN Draw necessary sign coordinate arrows, a linear graph, a
normal tree, and identify state variables and system order for each of the following
schematics.

1. Electrical system, voltage source

+
−+(

' !

�

2. Rotational mechanical system, angular velocity source

https://sys.ricopic.one/k8
https://sys.ricopic.one/k8
https://sys.ricopic.one/metroid
https://sys.ricopic.one/megaman

72 Chapter 3

Ω(
:1

�1

�1 :2

�2

�2 �3

3. Translational mechanical system, force source

<3<2

�2
:2

�1

:1
<1

�(

Problem 3.3 LINKSONIC Draw necessary sign coordinate arrows, a linear graph, a
normal tree, and identify state variables and system order for each of the following
schematics.

1. Electrical system, voltage source

+
−+(

' !

�2�1

2. Rotational mechanical system, torque source

�0
)(

:1

�1

�1 :2

�2

�2 �3

3. Translational mechanical system, force source

<3<2

:3

�2

:2

�1

:1
<1

�(

Problem 3.4 LINKNINTENDO Use the following linear graph for a circuit to answer
the questions below, which are the steps to determining a state-space model of the
circuit. Use the sign convention from the diagram. +(is a voltage source.

https://sys.ricopic.one/sonic
https://sys.ricopic.one/nintendo

State-Space Models 73

+(

' !

�

1. Determine the normal tree, state variables, system order, state vector, input vector,
and output vector for the outputs 8' and E� .

2. Write the required elemental, continuity, and compatibility equations.
3. Solve for the state equation in standard form.
4. Solve for the output equation in standard form.

Problem 3.5 LINKSUPERNINTENDO Use the following linear graph for a mechani-
cal translational system to answer the questions below, which are the steps to
determining a state-space model from the linear graph.
Use the sign convention from the diagram. �(is a force source. Let the outputs

be E< and 5: .

�(< :

1. Determine the normal tree, state variables, system order, state vector, input vector,
and output vector.

2. Write the required elemental, continuity, and compatibility equations.
3. Solve for the state equation in standard form.
4. Solve for the output equation in standard form.

Problem 3.6 LINKGAMEBOY Use the following linear graph for a mechanical rotational
system to answer the questions below, which are the steps to determining a state-
space model from the linear graph.
Use the sign convention from the diagram.)(is a torque source. Let the outputs

be Ω� and)�.

)(

�:
�

https://sys.ricopic.one/supernintendo
https://sys.ricopic.one/gameboy

74 Chapter 3

1. Determine the normal tree, state variables, system order, state vector, input vector,
and output vector.

2. Write the required elemental, continuity, and compatibility equations.
3. Solve for the state equation in standard form.
4. Solve for the output equation in standard form.

Problem 3.7 LINKBLOWHARD Use the following linear graph for amechanical rotational
system to answer the questions below, which are the steps to determining a state-
space model from the linear graph.
Use the sign convention from the diagram. Ω(is an angular velocity source. Let

the outputs be the angular velocityΩ� of the inertia and the angular displacement �:
across the spring.

Ω(

� :

�

1. Determine the normal tree, state variables, system order, state vector, input vector,
and output vector.

2. Write the required elemental, continuity, and compatibility equations.
3. Solve for the state equation in standard form.
4. Solve for the output equation in standard form.

Problem 3.8 LINKBLINKEN Use the following linear graph for an electrical system to
answer the questions below, which are the steps to determining a state-space model
from the linear graph.
Use the sign assignments from the diagram. �(is a current source. Let the outputs

be the voltage across the capacitor E� and the current through the resistor 8'.

�(
� '

1. Determine the normal tree, state variables, system order, state vector, input vector,
and output vector.

2. Write the required elemental, continuity, and compatibility equations.
3. Solve for the state equation in standard form.
4. Solve for the output equation in standard form.

https://sys.ricopic.one/blowhard
https://sys.ricopic.one/blinken

State-Space Models 75

Problem 3.9 LINKCHUNKER Use the assigned coordinate arrows to draw a linear graph,
a normal tree, and identify state variables and system order for each of the following
schematics.

1. Electrical system, voltage and current source

+
−+(

'1 !1
�2

'4

�(

'2

!2

�1 '3

2. Rotational mechanical system, torque source, coordinate arrow

�1
)(

+
�1

�2

�2:1

�3

�3

3. Translational mechanical system, force sources (2)

<3<2

�(2

�2

:2

�1

:1
<1

�(1

+

Problem 3.10 LINKSTEVENUNIVERSE Use the assigned coordinate arrows to draw a
linear graph, a normal tree, and identify state variables, system order, and dependent

energy storage elements for each of the following schematics.

1. Electrical system, voltage and current source

https://sys.ricopic.one/chunker
https://sys.ricopic.one/stevenuniverse

76 Chapter 3

�(

!1
�1

'3

�2

+
−+(

'1

!3

!2 '2

2. Rotational mechanical system, angular velocity source

�1
Ω(

+
:1

�2

�2�1

�3

�3

3. Translational mechanical system, force sources (2)

<2

�(2:1
<1

�(1

+

Problem 3.11 LINKWINKEN Use the assigned coordinate arrows to draw a linear graph,
a normal tree, and identify state variables and system order for each of the following
schematics.

1. Electrical system, voltage source

+
−+(

'1 !
�2

'3�1 '2

2. Rotational mechanical system, torque source, coordinate arrow

�1
)(

+
�1:

�2

�2

https://sys.ricopic.one/winken

State-Space Models 77

3. Translational mechanical system, force source, coordinate arrow

<2<1

:2

:1

�1

�(

+

Problem 3.12 LINKGRANADA Use the assigned coordinate arrows to draw a linear graph,
a normal tree, and identify state variables and system order for each of the following
systems.

1. Rotational mechanical system, two torque sources

�1
)(1

�2

�3

�)(2

+

2. Translational mechanical system, velocity source

<1

�1
+(

<2

 �2

+

Problem 3.13 LINKVALENCIA Use the following linear graph for a mechanical transla-
tional system to answer the questions below, which are the steps to determining a
state-space model from the linear graph.
Use the sign convention from the diagram. �(is a force source. Let the outputs

be E<1 and E<2 .

�(

<1 <2�

1. Determine the normal tree, state variables, system order, state vector, input vector,
and output vector.

2. Write the required elemental, continuity, and compatibility equations.
3. Solve for the state equation in standard form.

https://sys.ricopic.one/granada
https://sys.ricopic.one/valencia

78 Chapter 3

4. Solve for the output equation in standard form.

Problem 3.14 LINKSTEVENASH Use the linear graph of figure 3.2 for an electrical system
to answer the questions below, which are the steps to determining a state-space
model from the linear graph.
Use the sign convention from the diagram.+(is a voltage source. Let the outputs

be E�2 , E', and 8((i.e., the source current).

1. Determine the normal tree, state variables, system order, state vector, input vector,
and output vector.

2. Write the required elemental, continuity, and compatibility equations.
3. Solve for the state equation in standard form.
4. Solve for the output equation in standard form.

+(

' !

�2
�1

Figure 3.2. A linear graph of an electrical system.

https://sys.ricopic.one/stevenash

4 Electromechanical Systems LINK
GO

In this chapter, we study systems that are in both the electrical and mechanical
energy domains, which we call electromechanical systems.

4.1 Ideal Transducers LINK
KN

Two-port system elements can model transducers—elements that
transfer energy between two energy domains or change its form
within an energy domain. The quintessential example, which we will consider
in detail, is themotor, which converts electrical energy to mechanical energy. How-
ever, many other system elements can be considered transducers, andwe’ll consider
a few in this lecture.
Each of the twoports has a through- and an across-variable.Weuse the convention

that the power into each port (P1 and P2) is positive, which has implications for the
signs of the power flow variables ℱ1, ℱ2,V1, andV2. For an two-port element to
transfer power, we have

P1 +P2 = 0

ℱ1V1 =−ℱ2V2 ⇒
V1

V2
=−ℱ2

ℱ1
and

V1

ℱ2
=−V2

ℱ1
.

We define the transformer ratio)� to be

)� ≡ V1

V2
=−ℱ2

ℱ1
.

Furthermore, we define the gyrator modulus �. to be

�. ≡ V1

ℱ2
=−V2

ℱ1
.

https://sys.ricopic.one/go
https://sys.ricopic.one/go
https://sys.ricopic.one/kn
https://sys.ricopic.one/kn

80 Chapter 4

For an ideal transducer—one that is linear, time-invariant, and without power
loss—we have only two nontrivial solutions:1

V2 =V1/)�
ℱ2 =−)� ℱ1

or

V2 =−�. ℱ1

ℱ2 =V1/�..
For a given element, if the solution with)� is a good model, we call that element

a transformer. If the �. solution is a good model, we call it a gyrator.

Example 4.1

Consider a DC motor with rotor radius A, number of coil turns # , background
field �, and rotor length ℓ . The torque) of a DCmotor is related to its coil current
8 by the relation

) =−2A#�ℓ 8.

1. Determine if DC motors are transformers or gyrators.
2. Find)� or �..
3. Derive the relation between the voltage E and the angular velocityΩ across

the motor using the assumption that it is an ideal transducer.

1. For an explanation of why that is the case, see (Rowell1997).

Electromechanical Systems 81

Figure 4.1. image

Example 4.2

Consider two gears with radii A1 and A2 and number of teeth =1 and =2.

1. Determine the power flow variables for gears.
2. Write two independent equations relating the power flow variables.
3. Determine if gears are transformers or gyrators.
4. Find)� or �..

for velocity, tangential velocity must be equal
for torque, tangential force must be equal
the number of teeth ratio is equal because that’s how we make gears ... the

radius ratio is equal to the teeth ratio (has to be because the gears need to mesh)

82 Chapter 4

Figure 4.2. image

4.2 Modeling with Transducers LINK
HU

We now develop both linear graph and state-space models of systems
that include transducers. Linear graphs of two-port ideal transducer
elements are drawn as shown in figure 4.3. Once again, we use the sign convention
that power into an element is positive. Often, the edges are drawn toward ground
nodes, which are always different when the transducer acts between different
energy domains. Transducers may or may not be sufficiently modeled by ideal
transducers. For instance, wemay need to consider the moment of inertia associated
with a gear. When this is the case, additional elements can be connected in parallel
and in series with the two-port element nodes. DC motors—another example—are
typically not modeled with an ideal transducer, alone, because the windings have
both resistance and inductance.

https://sys.ricopic.one/hu
https://sys.ricopic.one/hu

Electromechanical Systems 83

(a) Transformer. (b) Gyrator.

Figure 4.3. Two-port ideal linear graph elements of a transformer (a) and a gyrator (b).

4.2.1 State-Space Modeling with Transducers

We present a method for constructing a state-space model of systems containing
transducer elements. This procedure begins, as before, with the construction of the
normal tree. The following rules must be respected.

1. There can be no loops.
2. Every node must be connected.
3. Of a transformer’s two edges, exactly one is included.
4. Of a gyrator’s two edges, either both are or neither is included.

Form a normal tree with the following steps.

1. Include all nodes.
2. Include all across-variable sources.
3. Include as many as possible A-type elements.2

4. Include transducer edges, minimizing the number of T-types in the tree.
5. Include as many as possible D-type elements.
6. Include as many as possible T-type elements.

The state and output equations can be derived as before, but with the following
caveat: each two-port element requires two elemental equations.

2. Inclusion of an A-type at this step may result in a violation of R3 or R4 in the next, which implies the
A-type is a dependent energy storage element and that it should be excluded from the normal tree.

84 Chapter 4

4.3 DCMotors LINK
CJ

DC motors are commonly used in mechanical engineering designs as
an actuator. Products such as pumps, fans, conveyors, and robots use
DC motors to convert electrical energy to mechanical (rotational) energy.
DC motors first emerged in the mid-19th century as the first device to produce

useful mechanical work from electrical power.3 One of fathers of the DC motor, the
Benedictine priest Ányos Jedlik, invented the key facets of the motor: the stator,
the rotor, and the commutator. Roughly speaking, for a typical brushed DC motor,
current flowing through the wire windings of the stator produces a magnetic field
that turns the rotor, which has windings of its own; the commutator mechanically
switches the direction of current flow through the windings to yield continuous
electromagnetic torque.
We will begin our study of DC motors with a review of a key physical phe-

nomenon: the mechanical force on a charged particle moving in a magnetic
field.

4.3.1 Lorentz Force

Consider a charged particle moving through a background magnetic field. The
Lorentz force is the (mechanical!) force on the particle, which depends on the
velocity of the particle, the background magnetic field, and the background electric
field. Charge flowing through a straight, stationary4wire with current 8 in a uniform
background magnetic field H is subject to the cumulative effect of the Lorentz force
on each charge. Let the straight wire’s length and orientation in the �-field be
described by the vector ℓ, which should be chosen to be in the direction of positive
current flow. It can be shown that the resultant force f on the wire is

f = 8ℓ ×H

as shown in figure 4.4.

3. See a decent history here.

4. The equations here assume a stationary wire. In a DC motor, the wire is moving, which creates
additional effects, but the Lorentz force is still present.

https://sys.ricopic.one/cj
https://sys.ricopic.one/cj
https://en.wikipedia.org/wiki/%C3%81nyos_Jedlik
https://en.wikipedia.org/wiki/Electric_motor#History

Electromechanical Systems 85

f

f

Figure 4.4. The forces f on two wires in a magnetic field H. The wire on the left has
current flowing into the board, that on the right has current flowing out of the board.
The cross-product right-hand-rule applies.

With a curved wire, then, we could take infinitesimal sections 3ℓ and integrate
along the wire’s path:

f = 8
ˆ
3ℓ ×H.

DC motors take advantage of this electromechanical phenomenon by driving
current through cleverly arranged wires to generate torque on a shaft.

4.3.2 Permanent Magnet DCMotors

In order to take advantage of the Lorentz force, first a uniform backgroundmagnetic
field H is required. Some DC motors, called permanent magnet DC motors (PMDC
motors) generate this field with two stationary permanent magnets arranged as
shown in figure 4.5. The magnets are affixed to the “stationary” part of the motor
called the stator.

S N

f

f

f

f

(a)

S N

f

f

(b)

S N

f

f

f

f

(c)

Figure 4.5. Axial section view of a simple DC motor with permanent magnets.

86 Chapter 4

Now consider a rigidly supported wire with current 8 passing through the field
such that much of its length is perpendicular to the magnetic field. Consider the
resultant forces on these perpendicular sections of wire for different wire configura-
tions, as illustrated in figure 4.5. We have torque! But note that it changes direction
for different armature orientations, which will need to be addressed in a moment.
Note that we can wind this wire—which we call the armature—multiple times
around the loop to increase the torque. The rotating bit of the motor that supports
the armature is called the rotor, which includes the shaft.
The trouble is, if we connect our armature up to a circuit—which is usually located

alongside the stator, i.e. not rotating—the wire will wrap about itself, which is not
#winning. But we’re tricky af so let’s consider just cutting that wire and rigidly
connecting it to a disk—called a commutator—with two conductive regions, one
for each terminal of the armature. The commutator will rotate with the armature,
but it provides smooth contacts along the perimeter of the disk.
We can then connect the driving circuit to these contacts via brushes: conductive

blocks pressed against the commutator on opposite sides such that they remain in
contact (conducting current) yet allow the commutator to slide easily, as shown in
figure 4.6. Brushes are typically made from carbon and wear out over time. This is
partially mitigated by spring-loading, but eventually the brushes must be replaced,
nonetheless.

Figure 4.6. Illustration of brushes, commutator, and two armatures.

Electromechanical Systems 87

So brushes solve the “wire wrapping” problem, but do they have an effect on the
“torque flipping” issue? Yes! When the armature passes through its vertical orienta-
tion, current reverses direction through the armature. So whenever the perpendicular
section of wire is on the right, current flows in the same direction, regardless of to
which side of the armature it belongs.
Finally, is there away to overcome the limitation of torque variationwith different

armature angles? Yes: if there are several different armature windings at different
angles and correspondingly the commutator is split into several conductive contact
pairs (one for each armature winding), a relatively continuous torque results! Real
PMDC motors use this technique.

4.3.3 Wound Stator DCMotors

Wound statorDCmotors operate very similarly to PMDCmotors, but generate their
background fieldwith two stationary coils in place of the permanentmagnets, above.
These electromagnets require a current of their own, which is usually provided
through the same circuitry that supplies the armature current (DC motors typically
have only two terminals).
Three common configurations of the electrical connection of these are shown in

figure 4.7. These define the following three DC motor types.

shunt The shunt DC motor has its stator and rotor windings connected in parallel.
These are the most common wound stator DC motors and their speeds can be
easily controlled without feedback, but they have very low starting torque.

series The series DC motor has stator and rotor windings connected in series.
These have high starting torque—so high, in fact, that it is not advisable to
start these motors without a load—but their speeds are not as easily controlled
without feedback.

compound The compound DC motor has stator and rotor windings connected in
both series and parallel. These can exhibit characteristics that mix advantages
and disadvantages of shunt and series DC motors.

88 Chapter 4

+(

stator
coils M

ar
m
at
u
re

(a)

+(

M

(b)

+(

M

(c)

Figure 4.7. Connections for shunt, series, and compound DC motors.

4.3.4 Brushless DCMotors

There is yet another type of DC motor: brushless (BLDC). Brushless DC motors
work on principles more similar to AC motors, but require complex solid-state
switching that must be precisely timed. As their name implies, these motors do not
require brushes. A brushless DC motor mathematical model is not presented here,
but a nice introduction is given by (Baldursson2005).
The brushed DC motor is still widely used, despite its limitations, which include

relatively frequent maintenance to replace brushes that wear out or clean/replace
commutators. Other disadvantages of brushed DC motors include their relatively
large size, relatively large rotor inertia, heat generated by the windings of the stator
and/or rotor, and arcing that creates electronic interference for nearby electronics.
Reasons they are still widely used include that they are inexpensive (about half the
cost of brushless DC motors), don’t require (but often still use) complex driving
circuits, are easy to model, and are easily driven at different speeds; for these
reasons, an additional reason emerges: they’re relatively easy to design with!

4.3.5 A PMDCMotor Model

1 2

' !

� �

Figure 4.8. a better brushed DC motor model.

Electromechanical Systems 89

We have already explored a model for a PMDCmotor in example 4.1, which yielded
elemental equations

)2 =−)�81 and

Ω2 = E1/)�,
where)� is the motor constant. That model assumed neither armature resistance
nor inductance were present—that is, it was an ideal transformer model. A linear
graph of a much better model for a DC motor is shown in figure 4.8. This model
includes a resistor ' and inductor ! in series with an ideal transducer. On the
mechanical side, the rotor inertia � and internal bearing damping � are included.
The tail ends of ' and 2 should be connected to external electrical and mechanical
subgraphs, respectively.

4.3.6 Motor Constants

The motor torque constant C and back-emf voltage constant E are related to
the transformer ratio)� derived above to characterize a brushed DC motor’s
response. If expressed in a set of consistent units—say, SI units— C and E have
the same numerical value and are equivalent to)�. Precisely, with consistent units,
)� = E = C .
However, manufacturers usually use weird units like oz–in/A and V/krpm. If

they are given in anything but SI units, we recommend converting to SI for analysis.
Once in SI, we will have something like (for G ∈R):

 C = G N–m/A and

 E = G V/(rad/s).

So if we are given either C or E , the unknown constant can be found (in SI
units) by converting the known constant to SI.5

4.3.7 Animations

There are some great animations of DCmotor operating principles and construction.
I’ve included the url of my favorite, along with some bonus animations for other
important types of motors we don’t have time to discuss, here.

• Brushed DC motors: youtu.be/LAtPHANEfQo
• Brushless DC motors: youtu.be/bCEiOnuODac
• AC (asynchronous) induction motors: youtu.be/AQqyGNOP_3o
• AC synchronous motors: youtu.be/Vk2jDXxZIhs
• Stepper motors: youtu.be/eyqwLiowZiU

5. One more note. When given a torque constant, the unit “oz” means “ounce-force,” which is the mass
in regular (mass) ounces multiplied by the gravitational acceleration 6.

https://youtu.be/LAtPHANEfQo
https://youtu.be/bCEiOnuODac
https://youtu.be/AQqyGNOP_3o
https://youtu.be/Vk2jDXxZIhs
https://youtu.be/eyqwLiowZiU

90 Chapter 4

4.4 Modeling a Real Electromechanical System LINK
1F

We now model the electromechanical systems from the laboratory,
shown in figure 4.9. The system includes a brushed DC motor (Elec-
trocraft 23SMDC-LCSS servomotor from Servo Systems), two shafts, a shaft coupler,
two bearings, and a flywheel.

Figure 4.9. electromechanical systems from the lab.

The motor’s datasheet specifications are given in table 4.1. The mechanical sub-
system’s inertia is dominated by the stainless steel flywheel with � 5 = 0.324 · 10−3

kg-m2. The bearing damping �1 is the most difficult parameter to determine. Let’s
begin with the assumption that the combined bearing damping is �1 = 20 · 10−6

N-m/(rad/s).

4.4.1 Linear Graph Model

A linear graph model is in order. An ideal voltage source drives the
motor7—modeled as an ideal transducer with armature resistance ' and induc-
tance !, given in table 4.1. The ideal transducer’s rotational mechanical side (2)
is connected to a moment of inertia � = �< + � 5 = 0.381 · 10−3 kg-m2, dominated by
the flywheel,8 and damping �, which is the parallel combination of the internal
motor damping of table 4.1 and the bearing damping �1 , to yield �= 26.9 · 10−6

6. Load applied at one inch from bearing.

7. Often we can model our motor-driving source as ideal within an operating range. See ?? for more
details.

8. This is the sum of the inertia of the flywheel � 5 = 0.324 · 10−3 kg-m2 and the rotor �< = 0.0565 · 10−3

kg-m2. It might be worthwhile combining this with the inertia from the shaft and coupler to obtain a
more accurate value, but the difference is likely negligible.

https://sys.ricopic.one/1f
https://sys.ricopic.one/1f
http://servosystems.com/electrocraft_dcbrush_rdm103.html

Electromechanical Systems 91

Table 4.1: datasheet specifications for the Electrocraft 23SMDC-LCSS servomotor from
Servo Systems. This is the motor used in the lab.

parameter specification SI conversion

g
en
er
al

continuous stall torque 55 oz-in 0.388 N-m
peak torque)max 400 oz-in 2.82 N-m
max terminal voltage 60 Vdc 60 Vdc

max operating speed Ωmax 6000 rpm 628 rad/s

m
ec
h
an
ic
al

rotor inertia �< 0.008 oz-in/s2 56.5 · 10−6 N-m/s2

damping constant �< 0.25 oz-in/krpm 16.9 · 10−6 N-m/(rad/s)
thermal resistance 4 C/W 4 K/W
max armature temp 155 C 428 K
max friction torque 3 oz-in 0.0212 N-m
max radial load6 10 lb 44.5 N
weight (motor only) 3.5 lb 15.6 N

el
ec
tr
ic
al

torque constant C 13.7 oz-in/A 0.097 N-m/A
voltage constant E 10.2 V/krpm 0.097 V/(rad/s)
terminal resistance 1.6 Ω 1.6 Ω

electrical time constant 2.6 ms 2.6 · 10−3 s
mechanical time constant 8.9 ms 8.9 · 10−3 s
max continuous current 4 A 4 A
armature inductance 4.1 mH 4.1 · 10−3 H
max peak current 34 A 34 A

N-m/s2. We choose to ignore the flexibility of the coupler. Problem problem 4.4
considers the same system but does not ignore the coupler’s flexibility. In general,
shaft couplers have significant flexibility and, depending on the application, this
may require consideration in the dynamic model.

http://servosystems.com/electrocraft_dcbrush_rdm103.html

92 Chapter 4

1 2

' !

+(� �

(a)

1 2

' !

+(� �

(b)

Figure 4.10. a linear graph model of the electromechanical systems of
fig:lab_electromechanical_stations.

4.4.2 State-Space Model

The normal tree can be constructed by the procedure from ??. The voltage source+(
is first included, followed by �. Then exactly one edge of the ideal transducer must
be selected, minimizing the number of T-types in the tree. We don’t really have a
choice, in this case, because selecting edge 2 would create a loop, so we must select
edge 1. Next, ' is included. No more elements can be included without creating a
loop, so we are finished.
We are now prepared to determine variables. The state variables are across

variables of A-type tree branches and through variables of T-type links—so Ω� and
8!, and the system is second-order (= = 2). Clearly, the system’s input is the voltage
source +(. We are interested in all the variables for the analysis in ??, so we choose
them all for our outputs. In summary, then, the state, input, and output vectors are:

x =

[
Ω�

8!

]
, u =

[
+B

]
, and

y=
[
Ω�)� E! 8! Ω�)� E' 8' E1 81 Ω2)2 +B �B

]>
.

Let’s write some equations! Elemental are up first.

Electromechanical Systems 93

1 2

' !

+(� �

(a)

1 2

' !

+(� �

(b)

Figure 4.11. the linear graph model for drawing contours.

Now, continuity and compatibility equations are developed by summing through-
variables into contours. The three required contours—one for each of ', 1, and
�—can be drawn on figure 4.11. The three compatibility equations—one for each
of !, 2, and �—are found by “temporarily including” those links in the tree and
summing across-variables around the loops created. Let’s write the equations.

All that remains to form the state-space model is to eliminate variables that are
neither states nor inputs from the elemental, continuity, and compatibility equations.
Eliminating secondary variables by substituting the continuity and compatibility
equations into the elemental equations, the following results.

The last four equations allow us to eliminate the remaining undesirable variables
to obtain the state model in the standard form9

3x
3C

=�x + �u (4.1)

y=�x +�u (4.2)

9. Here is the rnd file for use with StateMint (statemint.stmartin.edu) to derive the state-space
model from the elemental, continuity, and compatibility equations:

ricopic.one/dynamic_systems/source/motor_model.rnd
Note that the “constraint equations” are the continuity and compatibility equations solved for primary

variables.

http://statemint.stmartin.edu/
http://ricopic.one/dynamic_systems/source/motor_model.rnd

94 Chapter 4

where

�=

[
−�/�)�/�
−)�/! −'/!

]
, (4.3)

�=

[
0

1/!

]
, (4.4)

� =

[
1 −� −)� 0 1 � 0 0)� 0 1 0 0 0
0)� −' 1 0 0 ' 1 0 1 0 −)� 0 1

]>
, and (4.5)

� =
[
0 0 1 0 0 0 0 0 0 0 0 0 1 0

]>
. (4.6)

4.5 DCMotor Performance in Steady-State LINK
6C

Brushed DCmotor performance has several aspects, but most of them
revolve around the so-calledmotor curve: for a given motor voltage,
its steady-state speed versus a constant torque applied to the load. The test setup for
drawing such a curve requires a calibrated, controllable torque source applied to
the motor shaft. A brake is typically used. A voltage-controlledmagnetic particle

brake is ideal.10

1 2

' !

+(�< �<)B

Figure 4.12. A linear graph model of the motor from ?? in a test-configuration with a
brake modeled by)B .

We will gain a deep understanding of DC motor performance characteristics
only by tarrying with this situation. Therefore, we begin by modeling it in ?? and
analyzing its performance in ??.

10. See, for instance here or here.

https://sys.ricopic.one/6c
https://sys.ricopic.one/6c
https://en.wikipedia.org/wiki/Electromagnetic_brake#Particle_brake
http://www.warnerelectric.com/products/torque-control-products/magnetic-particle/magnetic-particle-clutches-and-brakes

Electromechanical Systems 95

4.5.1 Modeling the Test System

Including a torque source)B on the load changes the model only slightly, as shown
in figure 4.12. Note that the mechanical subsystem is reduced to only the motor,
since during such a test the load and bearings would be detrimental (it is a test for
the motor, after all). Invariant are the normal tree, state variables, and most of the
derivation of the state equations.
The input vector becomes

u =

[
+B
)B

]
.

The continuity equation for the inertia becomes)�< =−)2 −)�< −)B (the torque
specifically opposesmotion, to which we assign the positive direction) and the state
model’s matrices � and � change, such that11

�=

[
−�</�<)�/�<
−)�/! −'/!

]
, (4.7)

�=

[
0 −1/�<

1/! 0

]
(4.8)

� =

[
1 −�< −)� 0 1 �< 0 0)� 0 1 0 0 0
0)� −' 1 0 0 ' 1 0 1 0 −)� 0 1

]>
, (4.9)

� =

[
0 0 1 0 0 0 0 0 0 0 0 0 1 0
0 −1 0 0 0 0 0 0 0 0 0 0 0 0

]>
. (4.10)

4.5.2 Steady-State Performance Analysis

Let’s begin by defining the system parameters.

11. Here is the rnd file for use with statemint.stmartin.edu to derive the state-space model from the
elemental, continuity, and compatibility equations.

http://ricopic.one/dynamic_systems/source/motor_model_characteristics.rnd
http://statemint.stmartin.edu

96 Chapter 4

Kt_spec = 13.7; % oz-in/A ... torque constant from spec
Kv_spec = 10.2; % V/krpm ... voltage constant from spec
Tmax_spec = 2.82; % N-m ... max (stall) torque from spec
Omax_spec = 628; % rad/s ... max speed (no load) from spec
N_oz = 0.278013851; % N/oz
m_in = 0.0254; % m/in
Kt_si = Kt_spec*N_oz*m_in; % N-m/A
rads_krpm = 1e3*2*pi/60; % (rad/s)/krpm
Kv_si = Kv_spec/rads_krpm; % V/(rad/s)
Jm = 56.5e-6; % kg-m^2 ... inertia of rotor
Bm = 16.9e-6; % N-m/s^2 ... motor damping coef
R = 1.6; % Ohm ... armature resistance
L = 4.1e-3; % H ... armature inductance
TF = Kv_si; % N-m/A ... trans ratio/motor constant

Let’s investigate what happens in steady-state x. The system is stationary when
¤x = 0 and u = u (stationary),12 so

0=�x + �u⇒

x =−�−1�u.

Let’s compute our steady-state solution for a constant voltage input +B(C)=+
and braking torque)B(C)=). We use a symbolic approach to gain insight.

syms B_ J_ TF_ L_ R_ Vs_ Ts_ % using underscore for syms

a_ = [-B_/J_,TF_/J_;-TF_/L_,-R_/L_];
b_ = [0,-1/J_;1/L_,0];
u_ = [Vs_;Ts_];

M1_ = -inv(a_)*b_ % matrix -A^-1 B
den_ = TF_^2 + B_*R_; % common den
M2_ = M1_.*den_; % factor
xs_ = M1_*u_ % full ss sol
xs_2_ = M2_*u_; % naughty factorless ss sol

12. A stationary input u is required for a stationary state if the input has any effect on the state; that is, if
� is nonzero.

Electromechanical Systems 97

M1_ =

[TF_/(TF_^2 + B_*R_), -R_/(TF_^2 + B_*R_)]
[B_/(TF_^2 + B_*R_), TF_/(TF_^2 + B_*R_)]

xs_ =

(TF_*Vs_)/(TF_^2 + B_*R_) - (R_*Ts_)/(TF_^2 + B_*R_)
(B_*Vs_)/(TF_^2 + B_*R_) + (TF_*Ts_)/(TF_^2 + B_*R_)

eig(a_)

ans =

-((B_^2*L_^2 - 2*B_*J_*L_*R_ + J_^2*R_^2 - 4*J_*L_*TF_^2)^(1/2) +
B_*L_ + J_*R_)/(2*J_*L_)↩→

-(B_*L_ - (B_^2*L_^2 - 2*B_*J_*L_*R_ + J_^2*R_^2 -
4*J_*L_*TF_^2)^(1/2) + J_*R_)/(2*J_*L_)↩→

A little more human-readably, using the fact that Ω2 =Ω� and 81 = 8!, and using
bars to denote steady-state values,

Ω2 =
1

)�2 + �<'
()�+B −')B)

81 =
1

)�2 + �<'
(�+B +)�)B)

Let’s focus on the first of these, the relationship between Ω2 and)B . For given +B ,
there is a linearly decreasing relationship between Ω2 and)B . This is precisely the
motor curve. But it’s one of a few curves plotted versus)B . Other common curves are
current 81, mechanical braking power Pbrk =)BΩB , and efficiency �. The efficiency
is defined as the ratio of the braking power to the voltage source power Psrc = �B+B ;
i.e.

�=Pbrk/Psrc.

We already have expressions forΩ2 and 81 in terms of)B , but we must still derive
them for Pbrk and �. For Pbrk, we must express ΩB in terms of known quantities.
From the linear graph, it is obvious that ΩB =Ω2. Therefore,

Pbrk =)BΩ2.

98 Chapter 4

Now for �. We have the unknown source current �B . However, from the linear
graph, it is obvious that �B = 81. Therefore,

�=
)BΩ2

81+B
.

Let’s compute these quantities for our parameters.

Vs = 60; % V ... max used, which is common
Tmax = TF/R*Vs; % N-m ... occurs when Omega_J = 0
Ts_a = linspace(0,Tmax,180); % N-m ... braking torques
O2_a = 1/(TF^2 + Bm*R)*(TF*Vs-R*Ts_a); % rad/s ... ss speed
i1_a = 1/(TF^2 + Bm*R)*(Bm*Vs+TF*Ts_a);
Pbrk_a = Ts_a.*O2_a; % W ... braking power
eff_a = Pbrk_a./(i1_a*Vs);

Now let’s plot them! The output is shown in figure 4.13.

0

200

400

600

P b
rk
(,

)

0

0.2

0.4

0.6

0.8

�

0 0.5 1 1.5 2 2.5 3 3.5 4
0

200

400

600

)B (N-m)

Ω
2
(r
ad
/
s)

0

10

20

30

40

8 1
(A
)

Figure 4.13. Motor curves derived from the model.

There are some key quantities that can be read from the graph and found ana-
lytically. The most important are the maximum speed Ω2max, which occurs at zero
torque, and maximum torque)Bmax, which occurs at zero speed. Another is that
the maximum mechanical power (output) occurs at)Bmax/2. Finally, the maximum
effieciency occurs at relatively low torque and high speed, which is typical for
the following reason: the two energy-dissipative elements, the resistor and the
damper, trade-off as being the dominant effect at the peak, and the resistor tends

Electromechanical Systems 99

to dominate. That is, at high speed/voltage and low torque/current, the damper
dominates dissipation; at low speed/voltage and high torque/current, the resistor
dominates dissipation. It is very common for a motor’s resistance to dominate the
damping, as in our case.
Let’s examine the maximum speed and torque.

Omax = O2_a(1) % rad/s ... occurs when T_s = 0
Tmax % N-m ... already computed and occurs when Omega_2 = 0

Omax =

614.2479

Tmax =

3.6526

Comparing these to the values given in the spec sheet, we see we’re pretty good,
but there’s a bit of a discrepency in the max torque.

Omax_spec
Tmax_spec
disp(sprintf('percent error for speed: %0.3g',...

(Omax-Omax_spec)/Omax_spec*100))
disp(sprintf('percent error for torque: %0.3g',...

(Tmax-Tmax_spec)/Tmax_spec*100))

Omax_spec =

628

Tmax_spec =

2.8200

percent error for speed: -2.19
percent error for torque: 29.5

We should investigate further, but what we will find is that these values are fairly
sensitive to)�, �, and '. In our case, it is likely that the given value for ' is a bit
low. It is given as 1.6 Ω, but it is probably closer to 2 Ω. However, the datasheet
for this motor was not clear about whether the maximum speed and torque values
were derived from a full motor curve fit or if they were the only points measured.
The former is best for estimating dynamic model parameters like ' and �, but the
latter is occasionally sufficient.

100 Chapter 4

4.6 Transient DCMotor Performance LINK
WD

Let’s begin by defining the system parameters.

Kt_spec = 13.7; % oz-in/A ... torque constant from spec
Kv_spec = 10.2; % V/krpm ... voltage constant from spec
Tmax_spec = 2.82; % N-m ... max (stall) torque from spec
Omax_spec = 628; % rad/s ... max speed (no load) from spec
N_oz = 0.278013851; % N/oz
m_in = 0.0254; % m/in
Kt_si = Kt_spec*N_oz*m_in; % N-m/A
rads_krpm = 1e3*2*pi/60; % (rad/s)/krpm
Kv_si = Kv_spec/rads_krpm; % V/(rad/s)
d = 2.5*m_in; % m ... flywheel diameter
thick = 1*m_in; % m ... flywheel thickness
vol = pi*(d/2)^2*thick; % flywheel volume
rho = 8000; % kg/m^3 ... flywheel density (304 stainless)
m = rho*vol; % kg ... flywheel mass
Jf = 1/2*m*(d/2)^2; % kg-m^2 ... inertia of flywheel
Jr = 56.5e-6; % kg-m^2 ... inertia of rotor
J = Jf+Jr; % kg-m^2 ... total inertia
Bm = 16.9e-6; % N-m/s^2 ... motor damping coef
Bd = 20e-6; % N-m/s^2 ... bearing damping coef
B = Bm + Bd; % N-m/s^2 ... total damping coef
R = 1.6; % Ohm ... armature resistance
L = 4.1e-3; % H ... armature inductance
TF = Kv_si; % N-m/A ... trans ratio/motor constant

The state-space model was derived in ??. First, we construct the �,
�, �, and � matrices (a, b, c, and d). Then we define aMATLAB LTI system model
using the ss command.

a = [-B/J,TF/J;-TF/L,-R/L];
b = [0;1/L];
c = [1,0;-B,TF;-TF,-R;0,1;1,0;B,0;...

0,R;0,1;TF,0;0,1;1,0;0,-TF;0,0;0,1];
d = [0; 0; 1; 0; 0; 0; 0; 0; 0; 0; 0; 0; 1; 0];
sys = ss(a,b,c,d);

::: {#simulating-the-step-response}

https://sys.ricopic.one/wd
https://sys.ricopic.one/wd
https://www.mathworks.com/discovery/state-space.html
https://www.mathworks.com/help/control/ref/ss.html

Electromechanical Systems 101

4.7 Simulating the Step Response LINK
0W

The step input is widely used to characterize the transient response of
a system.MATLAB’s step function conveniently simulates the step
response of an LTI system model.

[ys_a,t_a] = step(sys);
disp([t_a(1:6),ys_a(1:6,1:4)]) % print a little

0 0 0 1.0000 0
0.0002 0.0018 0.0056 0.9082 0.0573
0.0005 0.0071 0.0106 0.8245 0.1093
0.0007 0.0155 0.0152 0.7482 0.1565
0.0010 0.0267 0.0194 0.6786 0.1993
0.0012 0.0405 0.0232 0.6151 0.2381

The vector t_a contains values of time and array ys_a contains a vector of time-
series values for each output. If one would like the output for a step input :DB(C)
(scaled unit step DB(C)), by the principle of superposition for linear systems, one can
scale the output by :. The outputs are plotted in figure 4.14.

https://sys.ricopic.one/0w
https://sys.ricopic.one/0w
https://www.mathworks.com/help/control/ref/step.html

102 Chapter 4

0

10

20
Ω
�

0

0.05

0.1

)
�

−1

0

1

E
!

0

0.5

1

8 !

0
5

10
15
20

Ω
�

0
1
2
3
4·10−4

)
�

0
0.2
0.4
0.6
0.8

1

E
'

0
0.2
0.4
0.6
0.8
1

8 '

0
0.2
0.4
0.6
0.8

1

E
1

0
0.2
0.4
0.6
0.8
1

8 1
0

10

20

Ω
2

−0.1

−0.05

0

)
2

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

1

2

time (s)

+
B

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

0.5

1

� B

Figure 4.14

Electromechanical Systems 103

0
0.05

0.1
0.15

0.2
P �

0
0.5
1
1.5
2·10−2

ℰ �

−0.2

0

0.2

P !

−1

0

1·10−3

ℰ !

0

2

4 ·10−3

P �

0

0.5

1·10−3

ℰ �

0

0.5

1

P '

0

2

4·10−2

ℰ '

0
0.05

0.1
0.15

0.2

P 1

0
1
2
3
4·10−2

ℰ 1
−0.2

−0.15
−0.1

−0.05
0

P 2

−4
−3
−2
−1
0·10−2

ℰ 2

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

0.2
0.4
0.6
0.8

1

time (s)

P B

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0
1
2
3
4
5·10−2

ℰ B

Figure 4.15

104 Chapter 4

It is also interesting to inspect the power flow and energy associated with each
element. Since we have simulated both the across and the through variable for each
element, we can compute the instantaneous power by simply taking the product
of them at each time step. Moreover, we can cumulatively compute the energy
contribution of that power for each element. For energy storage elements, this is
the change in energy stored or supplied; for energy dissipative elements, this is
the change in energy dissipated; for source elements, this is the energy supplied or
absorbed. The results are plotted in figure 4.15.

P = NaN*ones(size(ys_a,1),size(ys_a,2)/2);
E = NaN*ones(size(P));
j = 0;
for i = 1:2:size(ys_a,2)

j = j+1;
P(:,j) = ys_a(:,i).*ys_a(:,i+1);
E(:,j) = cumtrapz(t_a,P(:,j));

end
disp('power:');
disp(P(1:6,1:4)) % print a little
disp('energy change:')
disp(E(1:6,1:4)) % print a little

power:
0 0 0 0

0.0000 0.0520 0.0000 0.0052
0.0001 0.0901 0.0000 0.0191
0.0002 0.1171 0.0000 0.0392
0.0005 0.1352 0.0000 0.0635
0.0009 0.1465 0.0000 0.0907

energy change:
1.0e-03 *

0 0 0 0
0.0000 0.0064 0.0000 0.0006
0.0000 0.0239 0.0000 0.0036
0.0001 0.0494 0.0000 0.0108
0.0001 0.0805 0.0000 0.0235
0.0003 0.1152 0.0000 0.0425

Electromechanical Systems 105

4.8 Estimating Parameters from the Step Response LINK
GI

Often, our model has a couple parameters we don’t know well from
the specifications, but must attempt to measure. For the system under
consideration, perhaps the two parameters most interesting to measure are the
dominant time constant and the transformer ratio)� (most important). In this
section, we explore how one might estimate them from a measured step response.
Other parameters in the system could be similarly estimated.
By way of the transfer function, the state-space model can be transformed into

input-output differential equations.

syms B_ J_ TF_ L_ R_ Vs_ s % using underscore for syms

a_ = [-B_/J_,TF_/J_;-TF_/L_,-R_/L_];
b_ = [0;1/L_];

(s*eye(2)-a_)^-1*b_

ans =
TF_/(TF_^2 + B_*R_ + B_*L_*s + J_*R_*s + J_*L_*s^2)

(B_ + J_*s)/(TF_^2 + B_*R_ + B_*L_*s + J_*R_*s + J_*L_*s^2)

The differential equation for Ω� is

32Ω�

3C2
+

(
'

!
+ �

�

)
3Ω�

3C
+)�

2 + �'
�!

Ω� =
)�

�!
+B .

The corresponding characteristic equation is

�2 +
(
'

!
+ �

�

)
�+)�

2 + �'
�!

= 0

which has solution

�1,2 =−1
2

(
'

!
+ �

�

)
± 1

2

√(
'

!
+ �

�

)2

− 4
)�2 + �'

�!
.

For a step input +B(C)=+ B , Ω�(0)= 3Ω�(0)/3C = 0, and distinct roots �1 and �2, the
solution is

Ω�(C)=+ B
)�

)�2 + �'

(
1− 1

�2 −�1

(
�24

�1C −�14
�2C

))
Let’s compute �1 and �2.

lambda12 = -1/2*(R/L+B/J) + ...
[1,-1]*1/2*sqrt((R/L+B/J)^2 - 4*(TF^2+B*R)/(J*L))

lambda12 =
-16.3467 -373.9941

https://sys.ricopic.one/gi
https://sys.ricopic.one/gi

106 Chapter 4

Both values are real, so we expect not an oscillation, but a decay to a final value.
However, that decay occurs with two different time constants: �1 =−1/�1 and
�2 =−1/�2.

tau12 = -1./lambda12
disp(['ratio: ',num2str(tau12(1)/tau12(2))])

tau12 =
0.0612 0.0027

ratio: 22.8788

So second decays much faster than the first. That’s good news for our estimation
project because we can easily ignore the step response’s first 5�2 ≈ 0.0134 s and
assume the rest is decaying at �1, which we call the dominant time constant and
which we would like to estimate.
Let’s generate some fake response data to get the idea. We’ll layer on some

Gaussian noise with randn to be more realistic. The data is plotted in figure 4.16.

t_data = linspace(0,-6/lambda12(1),200);

O_fun = @(t) TF/(TF^2+B*R)*...
(1-1/(lambda12(2)-lambda12(1))*...
(lambda12(2)*exp(lambda12(1)*t)-...
lambda12(1)*exp(lambda12(2)*t)));

rng(2);
O_data = O_fun(t_data) + .5*randn(size(t_data));

Electromechanical Systems 107

0 5 · 10−2 0.1 0.15 0.2 0.25 0.3 0.35 0.4
−2

0

2

4

6

8

10

12

time (s)

Ω
�
(r
ad
/
s)

Figure 4.16

Let’s trim the data to eliminate the time interval corresponding to the first five of
the “fast” time constant �2.

[t_5,i_5] = min(abs(t_data-(-5/lambda12(2)))); % delete
t_data_trunc = t_data((i_5+1):end);
O_data_trunc = O_data((i_5+1):end);

We need want to take the natural logarithm of the data so we can perform a
linear regression to estimate the “experimental” slow time constant �̃1. We must
first estimate the steady-state value Ω�∞ (which we’ll also need). We don’t want to
just take the last value in the array due to its noisiness. The data goes for six slow
time constants, so averaging the data for the last time constant is a good estimate.

[t_ss,i_ss] = ...
min(abs(t_data_trunc-(-5/lambda12(1)))); % start here

O_data_ss = O_data_trunc((i_ss+1):end);
mu_O_ss = mean(O_data_ss)
S_mu_O_ss = std(O_data_ss)/sqrt(length(O_data_ss))

mu_O_ss =
10.1801

S_mu_O_ss =
0.0763

108 Chapter 4

Let’s use this result to transform the data into its linear form.

O_lin = log(-(O_data_trunc-mu_O_ss));
O_lin_complex = find(imag(O_lin)>0);
disp(['number of complex values: ',...

num2str(length(O_lin_complex))])

number of complex values: 33

Now we have encountered a problem. The noisiness of the data makes some of
our points wander into negative-land. Logarithms of negative numbers are complex.
Naive approaches like just taking real parts, excluding complex values, or coercing
complex values to −∞ all have the issue of biasing the data.
There are a lot of approaches we could take. The best approaches include

nonlinear regression and discrete filtering to smooth the data (e.g. filtfilt).
We opt for an easier approach: we find the index at which the time series first

transgresses the boundary and exclude the data beyond the previous index.

i_bad = O_lin_complex(1);
t_lin_trunc = t_data_trunc(1:i_bad-1);
O_lin_trunc = O_lin(1:i_bad-1);

This is plotted in figure 4.17 along with the linear regression least-squares fit,
computed below.

pf = polyfit(t_lin_trunc,O_lin_trunc,1);
O_lin_fit = polyval(pf,t_lin_trunc);
tau_1_est = -1/pf(1)

tau_1_est =
0.0603

Electromechanical Systems 109

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18

−2

−1

0

1

2

time (s)

ln
(Ω

�∞
−
Ω
�(C

))
transformed data

linear fit

Figure 4.17

So our estimate for �1 is �̃1 = 60.3 ms. Recall that our analytic expression for �1 is
known in terms of other parameters. Similarly, the steady-state value of Ω� , which
has already been estimated to be Ω�∞ = 10.18 (i.e. mu_O_ss). This occurs when the
time-derivatives ofΩ� are zero. From the solution forΩ� (or its differential equation),

for constant +B(C)=+B , this occurs when

Ω�∞ =
)�

)�2 + �'+B .

An analytic expression for)� can be found by solving section 4.8, which yields

)� =+B ±
1

2Ω̃�∞

√
+2
B − 4�'Ω̃2

�∞

We choose the solution closer to the a priori (spec) value of 0.0974.

TF_est = (1 + (- 4*B*R*mu_O_ss^2 + 1^2)^(1/2))/(2*mu_O_ss)

TF_est =
0.0976

This estimate)̃� = 0.0976 is very close to the value given in the specification
sheet because we constructed it to be so. Real measurements would probably yield an
estimate further from the specification, which is why we would estimate it.

110 Chapter 4

4.9 Driving Motors LINK
QI

The DC motor requires DC electrical power provided by a circuit
called the “driving” circuit. For industrialmotors at least, these circuits
must provide significant power, and for this reason a separate (from the control
circuit) power supply is often used. There is a quick-and-dirty way to drive a DC
motor at variable speed: since its angular velocity is reliably proportional to its
voltage, place a potentiometer in series with the power supply andmotor. However,
this has disadvantages that include the power being limited and dissipated at high
potentiometer resistance (low speed). For most applications, we will need either a
current (or power) amplifier or—more likely—a microcontroller and an integrated
circuit to produce a pulse-width modulation driving signal.

4.9.0.1 Pulse-Width Modulation Pulse-width modulation (PWM) is a technique
used to deliver an effectively variable signal to a load (in this case a motor) without
a truly variable power source. A pulse of full source amplitude is repeated at a high
frequency (e.g. 20 kHz), delivering a signal that is effectively averaged by the load
dynamics such that its effects on the load are nearly continuous. The fraction of the
period that the signal is high (on) is called the duty cycle �. The following figure
shows a PWM signal E(C) and its average E(C)with a few parameter definitions.
The mean of any periodic signal can be computed with the integral

E(C)= 1
)

ˆ)

0
E(C),

which is easily evaluated for a PWM signal:

E(C)= �F

)
=��.

This result shows that if a PWM signal is delivered to a load, such as a DC motor,
that is relatively unaffected by high-frequency signals, the effective signal will be
simply the product of the source amplitude � and the duty cycle �. The duty cycle
can have values from 0 to 1, so the effective DC signal produced varies linearly �
from 0 to �.

4.9.0.2 PWMwith a Microcontroller and Integrated Circuit Amicrocontroller
such as the myRIO or Arduino can easily produce a PWM signal; however, this
signal is typically low-power and cannot drive even small DC motors. Therefore it is
common to include a special kind of integrated circuit (IC) that uses the microcon-
troller’s low-power PWM signal to gate a high-power DC source signal for delivery
to the motor. We use a connectorized printed circuit board (PCB, e.g. a PC mother-
board)—the Pololu motor driver carrier—that includes on it a STMicroelectronics
VNH5019 H-bridge motor driver integrated circuit (IC, i.e. a microchip).

https://sys.ricopic.one/qi
https://sys.ricopic.one/qi

Electromechanical Systems 111

4.9.0.2.1 H-Bridge Circuits We want to drive DC motors at different effective
voltages and different directions. An H-bridge circuit allows us to reverse the direc-
tion of the PWM signal delivered to the motor. The following is a diagram of the
H-bridge circuit.
The switches S1-S4 are typically instantiated with MOSFET transistors. As shown

in the figure below, during the high duration of the PWM pulse, either S1 and S4
(a) or S2 and S3 (b) are closed and the others are open.

1. motor driven one direction
2. motor driven the opposite direction

Recall that a DC motor can be modeled as a resistor and inductor in series with
an electro-mechanical transformer. The inductance of the windings make it an
“inductive” load, which presents the following challenge. We can’t rapidly change
the current flow through an inductor without a huge spike in voltage, and the
switches do just that, leading to switch damage. Therefore, during the low or “off”
duration of the PWM signal, S1-S4 cannot all be simply opened. There are actually a
few options for switch positions that allow the current to continue to flow without
inductive “kickback.”
What’s up with the diodes? Technically, they could be used to deal with the

kickback, but they typically are not because they dissipate power. However, they
are used to do just that to ease the transition between switch flips, which are never
quite simultaneous.

4.9.1 Motor Curves

Motors are often characterized by three steady-state curves:

1. a torque) versus angular velocity Ω curve;
2. an angular velocity Ω versus voltage E curve, which has slope 1/:< ; and
3. a torque) versus current 8 curve, which has slope −:< .
We will develop our own motor curves for the DC motor in the lab by simultane-

ously measuring E, 8, and Ω. Unfortunately, we will not be measuring) directly,
and so we will be unable to measure all these curves directly; however, we will
be able to infer them based on the (reasonable, but not perfect) assumption that
the motor has no power losses. In the end, they should look something like the
following (using our usual sign convention).
In order to construct such curves, we will measure E, 8, and Ω. The following

sections describe the measurement process.

112 Chapter 4

4.10 Problems LINK
XS

Problem 4.1 LINKTRIANGLE Respond to the following questions and imperatives with
one or two sentences and, if needed, equations and/or sketch.

1. Why do we include a resistor in lumped-parameter motor models?
2. How are brushes used in brushed DC motors?
3. With regard to standard motor curves, why do we say the “braking power”

is equivalent to the power that could be successfully transferred by the motor
to the mechanical system?

4. In terms of electrical and mechanical processes, why does an efficiency versus
torque motor curve have a peak?

5. As a DC motor’s bearings wear down, how will its efficiency curve be
affected?

Problem 4.2 LINKSQUARE Consider the system presented in the schematic of ??. Let
the DC motor have motor constant 0 (units N-m/A) and let the motor be driven
by an ideal current source �(. Assume the motor inertia has been lumped into �1 and
motor damping lumped into �1.

1. Draw a linear graph model.
2. Draw a normal tree.
3. Identify any dependent energy storage elements. If the motor was driven by

an ideal voltage source instead, how would this change?

Draw a linear graph model and normal tree.

Problem 4.3 LINKRECTANGLE Consider the system presented in the schematic of ??.
From the linear graph model and normal tree derived in problem 4.2, derive a
state-space model in standard form. Let the outputs be ��1 and ��2 , the angular
positions of the flywheels.

Problem 4.4 LINKQUADRILATERAL Consider the linear graphmodel of a motor coupled
to a rotational mechanical system shown in ??. This is similar to the model from

motor

+ −

�1

�1 :1

�2

�2 :2

Figure 4.18. schematic of an electromechanical system for .

https://sys.ricopic.one/xs
https://sys.ricopic.one/xs
https://sys.ricopic.one/triangle
https://sys.ricopic.one/square
https://sys.ricopic.one/rectangle
https://sys.ricopic.one/quadrilateral

Electromechanical Systems 113

1 2

' !

+(�< �<

:

� 5�1

Figure 4.19. a linear graph model of the electromechanical system.

the ??, but includes the flexibility of the shaft coupler. An ideal voltage source
drives the motor—modeled as an ideal transducer with armature resistance '
and inductance !, given by the manufacturer in table 4.1. The ideal transducer’s
rotational mechanical side (2) is connected to a moment of inertia �< modeling the
rotor inertia and damping �1 modeling the internal motor damping, both values
given in the motor specifications. Take �1 = �< and � 5 = 0.324 · 10−3 kg-m2. Assume
the shaft coupling has a torsional stiffness of : = 100 N-m/rad.
1. Derive a state-space model for the system with outputs 81 and Ω� 5 .
2. Create a Matlab ssmodel for the system and simulate its response from rest

to an input voltage +(= 10 V.
3. Plot the outputs through time until they reach steady state.

Problem 4.5 LINKMRPOTATOHEAD Consider the linear graph model (with normal tree)
of ??. This is a model of a motor with constant 0 connected to a pair of meshing
gears with transformer ratio # , the output over input gear ratio. An ideal voltage
source drives the motor—modeled as an ideal transducer with armature resistance
' and inductance !. The motor’s rotational mechanical side (2) is connected to
a moment of inertia �2 modeling the rotor and drive gear combined inertia. The
damping element �2 models the internal motor damping and the drive gear bearing
damping. The output side of the gear transducer (4) is connected to a moment
of inertia �4 modeling the output gear and load combined inertia. The damping
element �4 models the internal motor damping and the drive gear bearing damping.
Use the parameter values given in problem 4.5.

1. Derive a state-space model for the system with outputs Ω�2 and Ω�4 .
2. Create a Matlab ssmodel for the system and simulate its response from rest

to an input voltage +(= 20 V.
3. Plot the outputs through time until they reach steady state.

' 2 Ω

! 8 mH
 0 0.2 N-m/A

https://sys.ricopic.one/mrpotatohead

114 Chapter 4

�2 0.1 · 10−3 kg-m2

�2 50 �N-m/(rad/s)
5
�4 1 · 10−3 kg-m2

�4 70 �N-m/(rad/s)

Figure 4.20. A linear graph model with normal tree in green of an electromechanical
system with a gear reduction.

Problem 4.6 LINKCLUNKER Draw a linear graph, a normal tree, identify state variables,
identify system order, and denote any dependent energy storage elements for each of
the following schematics.

1. The electronic system of figure 4.21, voltage and current sources, and
transformer with transformer ratio # .

2. The electromechanical system of figure 4.22 with motor model parameters
shown, coordinate arrow in green.Model the propeller as amoment of inertia
�2 and damping �2.

3. The translational mechanical system of figure 4.23, force source, coordinate
arrow in green.

Figure 4.21. a circuit diagram.

https://sys.ricopic.one/clunker

Electromechanical Systems 115

Figure 4.22. Sketch of a motor coupled to a fan.

Figure 4.23. Schematic of a mechanical system.

Problem 4.7 LINKCURVY Consider the DC motor curves of figure 4.13, reproduced in
figure 4.24.

1. At peak efficiency, what is the steady-state motor speed?
2. At peak efficiency, what is the steady-state motor torque?
3. You are to use this motor to drive a load at a constant angular speed of

100 rad/s with at least 1 N-m of torque. You wisely choose to use a gear
reduction between the motor and load. What should the gear ratio be to
meet the above requirements and optimize efficiency? Justify your answer
in terms of the motor curves of figure 4.24.

https://sys.ricopic.one/curvy

116 Chapter 4

0

200

400

600
P b

rk
(,

)

0

0.2

0.4

0.6

0.8

�

0 0.5 1 1.5 2 2.5 3 3.5 4
0

200

400

600

)B (N-m)

Ω
2
(r
ad
/
s)

0

10

20

30

40

8 1
(A
)

Figure 4.24. The motor curve figure 4.13.

Problem 4.8 LINKCHAIR Consider the opamp circuit of figure 4.25, which will be used
to drive a PMDC motor. The input can supply a variable +(∈ [0, 10] V, the motor
has constant 0 = 0.05 V/(rad/s) and coil resistance '< = 1 Ω, and the opamp has
differential supplies ±24 V. Assume the maximum torque magnitude required from
the motor at top speed is |)2 | = 0.1 N-m and ignore any voltage drop in the motor
due to the coil inductance.13 Select '1 and '2 to demonstrably meet the following
design requirements:

1. drivable motor speeds of at least [0, 400] rad/s,
2. no saturation of the opamp (i.e. |E> | < 24 V), and
3. a maximum combined power dissipation by '1 and '2 less than 300 mW.

13. Do not ignore the voltage drop across '< , though. Note that this amounts to an assumption of
steady-state operation at top speed. By requiring a specific)2, we are also implicitly ignoring torque
losses due to motor bearing damping.

https://sys.ricopic.one/chair

Electromechanical Systems 117

−

+

'1

'2

+
−+(

+

−

E>

Figure 4.25. An opamp circuit.

Hint: start with the elemental equations of the DC motor to determine the neces-
sary amplifier output E> , then constrain '1 and '2 to meet the gain requirements,
and finally further constrain '1 and '2 to meet the power dissipation requirement.

Problem 4.9 LINKONOMATOPOEIA Consider the DC motor curves of figure 4.13,
reproduced in figure 4.24. If this motor is running at 400 rad

s ,

1. How much torque is produced?
2. What is the output power?
3. What is the input power?
4. Why are the input and output power the same or different?

Problem 4.10 LINKDEGLAZIFICATION Explain in your own words what lumped
parameter elements should be used when modeling an electric motor and why.

Problem 4.11 LINKCONFUZZLED In the linear graph below a system is depicted con-
sisting of a motor with its related damping and inertia driven by a voltage source
and connected to a set of gears driving a second inertia. A rotary spring is attached
between the two inertias.
Given this linear graph:

1. draw a normal tree,
2. determine the state variables and system order, and
3. list any dependent energy storage elements and explain what this implies.

https://sys.ricopic.one/onomatopoeia
https://sys.ricopic.one/deglazification
https://sys.ricopic.one/confuzzled

118 Chapter 4

+(

' !

1 2
�1 �1

3 4
�2 �2

:

Problem 4.12 LINKLEVITATION In the linear graph and normal tree below a system is
depicted consisting of a motor driven by a voltage source +(with inertia � driving
a rotary damper and spring connected in series. Let the motor constant be 0, and
outputs of the system be the rotational velocity of the inertia,Ω� , and the change in
rotational velocity across the rotational damper, Ω�.
Given this linear graph and normal tree:

1. determine the state variables,
2. define the state, input, and output vectors,
3. write the elemental, continuity, and compatibility equations, and
4. solve for the state and output equations.

+(

' !

1 2
�

�

https://sys.ricopic.one/levitation

5 Linear Time-Invariant System Properties LINK
0V

In this chapter, we will extend our understanding of linear, time-invariant (LTI)
system properties. We must keep in mind a few important definitions.
The transient response of a system is its response during the initial time-interval

during which the initial conditions dominate. The steady-state response of a system
is its remaining response, which occurs after the transient response. Figure 5.1
illustrates these definitions.

transient steady-state

time (s)

� 2� 3� 4� 5� 6� 7� 8�

0

5

10

Figure 5.1. Transient and steady-state responses. Note that the transition is not precisely
defined.

The free response of a system is the response of the system to initial conditions—
without forcing (i.e. the specific solution of the io ODE with the forcing function
identically zero). This is closely related to, but distinct from, the transient response,
which is the free response plus an additional term. This additional term is the forced
response: the response of the system to a forcing function—without initial conditions

(i.e. the specific solution of the io ODE with the initial conditions identically zero).

https://sys.ricopic.one/0v
https://sys.ricopic.one/0v

120 Chapter 5

5.1 Superposition, Derivative, and Integral Properties LINK
U9

From the principle of superposition, linear, time invariant (LTI) sys-
tem responses to both initial conditions and nonzero forcing can be
obtained by summing the free response Hfr and forced response Hfo:

H(C)= Hfr(C) + Hfo(C).
Moreover, superposition says that any linear combination of inputs yields a cor-
responding linear combination of outputs. That is, we can find the response of a
system to each input, separately, then linearly combine (scale and sum) the results
according to the original linear combination. That is, for inputs D1 and D2 and
constants 01 , 02 ∈R, a forcing function

5 (C)= 01D1(C) + 02D2(C)
would yield output

H(C)= 01H1(C) + 02H2(C)
where H1 and H2 are the outputs for inputs D1 and D2, respectively.
This powerful principle allows us to construct solutions to complex forcing func-

tions by decomposing the problem. It also allows us to make extensive use of
existing solutions to common inputs.
There are two more LTI system properties worth noting here. Let a system have

input D1 and corresponding output H1. If the system is then given input D2(C)= ¤D1(C),
the corresponding output is

H2(C)= ¤H1(C).
Similarly, if the same system is then given input D3(C)=

´ C
0 D1(�)3�, the correspond-

ing output is

H3(C)=
ˆ C

0
H1(�)3�.

These are sometimes called the derivative and integral properties of LTI systems.

https://sys.ricopic.one/u9
https://sys.ricopic.one/u9

Linear Time-Invariant System Properties 121

5.2 Equilibrium and Stability Properties LINK
NS

For a systemwith LTI state-spacemodel ¤x =�x + �u, y=�x +�u, the
model is in an equilibrium state x if ¤x = 0. This implies �x + �u = 0.
For constant input u, this implies

�x =−�u.
If � is invertible,1 as is often the case, there is a unique solution for a single
equilibrium state:

x =−�−1�u.

Definition 5.1

If x is perturbed from an equilibrium state x, the response x(C) can:
1. asymptotically return to x
2. diverge from x
3. remain perturbed or oscillate about x with a constant amplitude

A phase portrait is a parametric plot of state variable trajectories, with time
implicit. Phase portraits are exceptionally useful for understanding nonlinear
systems, but they also give us a nice way to understand stability, as in figure 5.2.

assymptotically stable

x2

x1

(a) Asymptotically stable.

marginally stable

x2

x1

(b) Marginally stable.

unstable

x2

x1

(c) Unstable.

Figure 5.2. A phase-portrait demonstration of (a) asymptotic stability, (b) marginal
stability, and (c) instability for a second-order system.

1. If � is not invertible, the system has at least one eigenvalue equal to zero, which yields an equilibrium
subspace equal to an offset (by �u) of the null space of the state space R= .

https://sys.ricopic.one/ns
https://sys.ricopic.one/ns

122 Chapter 5

These definitions of stability can be interpreted in terms of the free response of a
system, as described, below.

5.2.1 Stability Defined by the Free Response

Using the concept of the free response (no inputs, just initial conditions), we define
the following types of stability for LTI systems (Nise2015).

1. An LTI system is asymptotically stable if the free response approaches an
equilibrium state as time approaches infinity.

2. An LTI system is unstable if the free response grows without bound as time
approaches infinity.

3. An LTI system ismarginally stable if the free response neither decays nor
grows but remains constant or oscillates as time approaches infinity.

These statements imply that the free response alone governs stability. Recall
that the free response Hfr of a system with characteristic equation roots �8 with
multiplicity <8 , for constants �8 , is

Hfr(C)=
∑
8

�8C
<8−14�8 C .

Each term will either decay to zero, remain constant, or increase without bound—
depending on the sign of the real part of the corresponding root of the characteristic
equation<(�8).
In other words, for an LTI system, the following statements hold.

1. An LTI system is asymptotically stable if, for all �8 ,<(�8)< 0.
2. An LTI system is unstable if, for any �8 ,<(�8)> 0.
3. An LTI system is marginally stable if,

1. for all �8 ,<(�8) ≤ 0 and

2. at least one<(�8)= 0 and

3. no �8 for which<(�8)= 0 has multiplicity <8 > 1.

5.2.2 Stability Defined by the Forced Response

An alternate formulation of the stability definitions above is called the bounded-
input bounded-output (BIBO) definition of stability, and states the follow-
ing (Nise2015).

1. A system is BIBO stable if every bounded input yields a bounded output.
2. A system is BIBO unstable if any bounded input yields an unbounded output.

In terms of BIBO stability, marginal stability, then, means that a system has
a bounded response to some inputs and an unbounded response to others. For
instance, a second-order undamped system response to a sinusoidal input at the

Linear Time-Invariant System Properties 123

natural frequency is unbounded, whereas every other input yields a bounded
output.
Although we focus on the definitions of stability in terms of the free response, it

is good to understand BIBO stability, as well.

5.3 Vibration Isolation Table Analysis LINK
B9

In this example, we exercise many of the methods for modeling and
analysis explored thus far.
Given the vibration isolation tablemodel in figure 5.3—with< = 320 kg, : = 16000

N/m, and �= 1200 N–m/s—derive:

1. a linear graph model,
2. a state-space model,
3. the equilibrium state x for the unit step input,
4. a transfer function model,
5. an input-output differential equation model with input +B and output E< ,
6. a solution for E<(C) for a unit step input +B(C)= 1 m/s for C ≥ 0,
7. the system’s stability.

+B

: �

<

Figure 5.3. A vibration isolation table schematic with input velocity +B .

https://sys.ricopic.one/b9
https://sys.ricopic.one/b9

124 Chapter 5

5.3.1 Linear Graph and State-Space Models

+B

:

�

<

Figure 5.4. linear graph of the isolation table.

The linear graph and normal tree are shown in figure 5.4. Note that there is an
equilibrium for this system, so we are justified in ignoring gravity and referencing
any displacements to the static equilibrium position.2 The state variables are the
velocity of the mass E< and the force through the spring 5: and the system order is
= = 2. The input, state, and output vectors are

u =
[
+B

]
x =

[
E<
5:

]
y=

[
E<

]
.

The elemental equations are as follows.
The continuity and compatibility equations are as follows.

The state equation can be found by substituting the continuity and compatibility
equations into the elemental equations, and eliminating 5�, to yield

¤x =
[
−�/< 1/<
−: 0

]
x +

[
�/<
:

]
u (5.1)

y=
[
1 0

]
x +

[
0
]
u. (5.2)

2. For a discussion of this ignoring of gravity, see ??.

Linear Time-Invariant System Properties 125

5.3.2 Equilibrium

Let’s check to see if � is invertible by trying to compute its inverse:

�−1 =

[
−�/< 1/<
−: 0

]−1

=
1
:/<

[
0 −1/<
: −�/<

]
So it has an inverse, after all! Let’s use this to compute the equilibrium state:

x =−�−1�u

=
−<
:

[
0 −1/<
: −�/<

] [
�/<
:

] [
1
]

=
−<
:

[
−:/<

0

]
=

[
1
0

]
So the system is in equilibrium with E< = 1 m/s and 5: = 0 N. Since E< is also our
output, we expect 1 m/s to be our steady-state output value.

5.3.3 Transfer Function Model

The transfer function�(B)=+<(B)/+B(B)will be used as a bridge to the input-output
differential equation. The transfer function can be found from the usual formula,
from ??,

�(B)=�(B� −�)−1�+�.
Let’s first compute (B� −�)−1:3

(B� −�)−1 =

([
B 0
0 B

]
−

[
−�/< 1/<
−: 0

])−1

(5.3)

=

[
B + �/< −1/<

: B

]−1

(5.4)

=
1

(B + �/<)(B) − (−1/<)(:)

[
B 1/<
−: B + �/<

]
(5.5)

=
1

B2 + (�/<)B + :/<

[
B 1/<
−: B + �/<

]
(5.6)

3. See (Rowell1997) for details on the matrix inverse.

126 Chapter 5

Now we’re ready to compute the entirety of �:

�(B)= 1
B2 + (�/<)B + :/<

[
1 0

] [
B 1/<
−: B + �/<

] [
�/<
:

]
+

[
0
]

(5.7)

=
1

B2 + (�/<)B + :/<
[
B 1/<

] [
�/<
:

]
(5.8)

=
(�/<)B + :/<

B2 + (�/<)B + :/< . (5.9)

5.3.4 Input-Output Differential Equation

The input-output differential equation can be found from the reverse of the
procedure in ??. Beginning from the transfer function,

+<

+B
=

(�/<)B + :/<
B2 + (�/<)B + :/< ⇒ (5.10)(

B2 + (�/<)B + :/<
)
+< = ((�/<)B + :/<)+B ⇒ (5.11)

¥E< + (�/<) ¤E< + (:/<)E< = (�/<) ¤+B + (:/<)+B . (5.12)

5.3.5 Step Response

The step response is found using superposition and the derivative property of LTI
systems. The forcing function 5 (C)= (�/<) ¤+B + (:/<)+B is composed of two terms,
one of which has a derivative of the input +B . Rather than attempting to solve the
entire problem at once, we choose to find the response for a forcing function 5 (C)= 1
(for C ≥ 0)—that is, the unit step response—and use superposition and the derivative
property of LTI systems to calculate the composite response.

5.3.5.1 Unit Step Response The characteristic equation of equation (5.12) is

�2 + (�/<)�+ :/< = 0⇒ (5.13)

=− �

2<
±
√
�2 − 4<:

2<
⇒ (5.14)

�1,2 =−1.875± 96.818. (5.15)

The roots are complex, so the system will have a damped sinusoidal step response.
Let �=−1.875 and $= 6.818 such that �1,2 = �± 9$. The homogeneous solution is

E<ℎ
(C)=�14

�1C +�24
�2C .

Linear Time-Invariant System Properties 127

In this form, �1 and �2 are complex. It is somewhat easier to deal with

E<ℎ
(C)=�14

�C 4 9$C +�24
�C 4−9$C (5.16)

= 4�C (�1 cos $C + 9�1 sin $C +�2 cos $C − 9�2 sin $C) (5.17)

= 4�C ((�1 +�2) cos $C + 9(�1 −�2) sin $C) . (5.18)

Let �3 =�1 +�2 and �4 = 9(�1 −�2) such that
E<ℎ

(C)= 4�C (�3 cos $C +�4 sin $C) .
This is a decaying (because � < 0) sinusoid. A nice aspect of this new form is that
�3 and �4 are real.
Now, the particular solution can be found by assuming a solution of the form

E<? (C)= for C ≥ 0. Substituting this into equation (5.12) (with forcing 5 (C)= 1, we
attempt to find a solution for (that is, determine it):

(:/<) = 1⇒ =</:.
Therefore, E<? (C)=</: is a solution, and therefore the general solution is

E<step(C)= E<ℎ
(C) + E<? (C) (5.19)

= 4�C (�3 cos $C +�4 sin $C) +</:. (5.20)

This leaves the specific solution, to be found applying the initial conditions (assumed
to be zero). Before we do so, however, we need the time-derivative of the E<step :

¤E<step(C)= 4�C ((�3�+�4$) cos($C) + (�4�−�3$) sin($C)) .
Now, applying the initial conditions,

E<step(0)= 0⇒ (5.21)

�3 =−</: (5.22)

¤E<step(0)= 0⇒ 0=�3�+�4$⇒ (5.23)

�4 =
�
$

· <
:
. (5.24)

It’s good form to re-write this as a single sinusoid:

E<step(C)= E<ℎ
(C) + E<? (C) (5.25)

=�14
�C cos($C +#1) +</: (5.26)

where we have used equation (A.39) to find

�1 =

√
�2

3 +�2
4 (5.27)

#1 =− arctan(�4/�3). (5.28)

128 Chapter 5

5.3.5.2 Superposition and the Derivative Property Recall that the actual forcing
function is a linear combination of the input and its time-derivative. Therefore, it is
expedient to re-write the time-derivative of the unit step response:

¤E<step(C)=�14
�C (� cos($C +#1) −$ sin($C +#1)) (5.29)

=�1�24
�C cos($C +#1 +#2) (5.30)

where

�2 =
√
�2 +$2 (5.31)

#2 =− arctan(−$/�). (5.32)

Finally, applying superposition and the derivative rule of LTI systems,

E<(C)= (�/<) ¤E<step(C) + (:/<)E<step (5.33)

=
�

<
�1�24

�C cos($C +#1 +#2) +
:

<
�14

�C cos($C +#1) + 1. (5.34)

This is the solution!
It’s worth plotting the response. Begin by defining the system parameters.

m = 320; % kg ... mass
k = 16000; % N/m ... spring constant
B = 1200; % N-m/s ... damping coefficient

Now define the secondary parameters.

lambda = -B/(2*m)+[-1,1]*sqrt(B^2-4*m*k)/(2*m);
sigma = real(lambda(1));
omega = imag(lambda(2));
K = m/k;
C3 = -m/k;
C4 = sigma/omega*m/k;
A1 = sqrt(C3^2+C4^2);
psi1 = -atan2(C4,C3);
A2 = sqrt(sigma^2+omega^2);
psi2 = -atan2(-omega,sigma);

Finally, the solution for E<(C) can be defined as an anonymous function.
vm = @(t) ...

A1*A2*B/m*exp(sigma*t).*cos(omega*t+psi1+psi2)+...
A1*k/m*exp(sigma*t).*cos(omega*t+psi1)+...
1;

Now, plot over the first few seconds. The results are shown in Figure 5.5.

t_a = linspace(0,3,200);
h = figure;

Linear Time-Invariant System Properties 129

p = plot(t_a,vm(t_a),'linewidth',1.5);
xlabel('time (s)')
ylabel('velocity $v_m(t)$ (m/s)',...

'interpreter','latex');
grid on
hgsave(h,'figures/temp');

Note that the steady-state output value agrees with that predicted by the
equilibrium analysis, above.

5.3.6 Stability

We have learned what we need in order to analyze the system’s stability. The roots
of the characteristic equation were �1,2 =−1.875± 96.818, which clearly all have
negative real parts, and therefore the system is asymptotically stable.

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

time (s)

v
el
o
ci
ty
E
<
(C
)(
m
/
s)

Figure 5.5. vibration table step response E<(C).

130 Chapter 5

5.4 When Gravity Ghosts You LINK
70

You’re familiar with experience. Just when you think you’re getting
along so well with a “vertically” oriented translational mechanical
system, gravity stops answering your texts. In this lecture, I’ll try to explain this
common experience: it seems that sometimes the force of gravity “matters,” and
other times it does not. Is gravity really Hamletic, an ambivalent vixen, or is there
some way to understand this phenomenon?
Consider the following example contrived to shed some light.

Example 5.1

Often when considering a spring :, we focus on the velocity E: across it, i.e. the
time-derivative of the displacement G: . We effectively differentiate-away the
constant unstretched length ! from G: ; we can think of

G: − !
as the “stretch” of the spring. In this exercise, we will attend closely to the details
of this stretching.

Figure 5.6. A mechanical harmonic oscillator with spring : unstretched (left) and
stretched (right) to its static equilibrium length.

Consider the mechanical harmonic oscillator shown in figure 5.6. Derive a single
input-output ODE for the system in terms of G: , the total displacement across the
spring. Let the constant !̃ be the stretched length of the spring when the system
is in static equilibrium. Solve for !̃ in terms of the system parameters. Show that
when we change ODE dependent variable from G: to

G̃: = G: − !̃,
the displacement from equilibrium, gravity ghosts us!

https://sys.ricopic.one/70
https://sys.ricopic.one/70

Linear Time-Invariant System Properties 131

For this example, there is a much shorter way to deriving the system ODE than
our usual approach, and we will use it here: the traditional free-body diagram
application of Newton’s laws, shown in figure 5.7. Applying Newton’s second
law,

�6 + 5: =< ¥G< =< ¥G:
where the forces are

�6 =< 6 and

5: =−:(G: − !). (when G: > 0, 5: < 0)

Figure 5.7. A free-body diagram of the mass.

Substituting in the forces,

< 6 − :(G: − !)=< ¥G: ⇒
< ¥G: + : G: =< 6 + : !.

Equilibrium implies ¥G: = 0 and G: = !̃, therefore

: !̃=< 6 + : ! ⇒

!̃=
< 6

:
+ !.

Changing variables à la section 5.4 in the ODE yields

<
32

3C2
(G̃: + !̃) + :(G̃: + !̃− !)=< 6 ⇒

< ¥̃G: + :
(
G̃: +

(< 6

:
+ !

)
− !

)
=< 6 ⇒

< ¥̃G: + :G̃: +< 6 =< 6 ⇒

< ¥̃G: + :G̃: = 0.

Alas, poor ghost!

We have seen now that the gravitational ghosting occurs when we change vari-
ables such that the displacement is relative to an equilibrium in the gravitational

132 Chapter 5

field. It is simply a change of datum or reference position of the displacement that
cancels out the gravitational term—ay, there’s the rub! We call this the equilibrium
requirement.
For this reason, those performing such analyses, with a flourish of the hand,

declare vertical displacements relative to equilibrium and poof—gravity disappears
without explicit justification, for the details make cowards of us all.

Figure 5.8. To ghost or not to ghost, that is the question.

But there are situations in which this would be a fatal error: those for which there
is no equilibrium! For instance, consider if the mass in our previous example was
suspended from a damper instead of a spring: in this case, no equilibrium exists!
Without going through the details or at least recalling the equilibrium requirement,
it can be easy to fool oneself into wrongly dismissing gravity.

Remember me,
Ghost-would-be,
For I am thy father’s spirit,
If gravity’d,
With thee flee,
Th’equilibrium requirement.

Linear Time-Invariant System Properties 133

5.5 Problems LINK
CR

Problem 5.1 LINKOIL A certain sensor used to measure displacement over time C is
tested several times with input displacement D1(C) and a certain function H1(C) is
estimated to properly characterize the corresponding voltage output.
Assuming the sensor is linear and time-invariant, what would we expect the

output sensor voltage H2(C) to be when the following input is applied?

D2(C)= 3 ¤D1(C) − 5 D1(C) +
ˆ C

0
6 D1(�) 3�

Problem 5.2 LINKWATER A system with input D(C) and output H(C) has the governing
dynamical equation

2 ¥H + 12 ¤H + 50 H =−10 ¤D + 4D.

1. What is the equilibrium H(C)when D(C)= 6?
2. Demonstrate the stability, marginal stability, or instability of the system.

Problem 5.3 LINKTIMMYCHALAMET The free response of a linear system with a given
set of initial conditions is Hfr. The forced response of the system to input D1 is Hfo1 .
The forced response of the system to input D2 is Hfo2 . What is the (specific) response
of the system to the same set of initial conditions when D1(C) + D2(C) is also applied?
Express your answer in terms of Hfr, Hfo1 , and Hfo2 .

Problem 5.4 LINKFLOPUGH Consider a linear system with state-space model matrices

�=

[
−4 11
3 −12

]
, �=

[
0
2

]
, � =

[
1 0

]
, � =

[
0
]
.

For this system, respond to the following questions and imperatives.

1. What is the equilibrium state x for input D(C)= 0?
2. Find the corresponding input-output ODE for the system.
3. Demonstrate the asymptotic stability, marginal stability, or instability of the

system from the ODE.

https://sys.ricopic.one/cr
https://sys.ricopic.one/cr
https://sys.ricopic.one/oil
https://sys.ricopic.one/water
https://sys.ricopic.one/timmychalamet
https://sys.ricopic.one/flopugh

6 Qualities of Transient Response LINK
2M

In this chapter, we explore the qualities of transient response—the response of the
system in the interval during which initial conditions dominate.
We focus on characterizing first- and second-order linear systems; not because

they’re easiest (they are), but because nonlinear systems can be linearized about an
operating point and because higher-order linear system responses are just sums of

first- and second-order responses, making “everything look first- and second-order.”
Well, many things, at least.
In this chapter, we primarily consider systems represented by single-input,

single-output (SISO) ordinary differential equations (also called io ODEs)—with
time C, output H, input D, forcing function 5 , constant coefficients 08 , 1 9 , order =, and
< ≤ = for = ∈N0—of the form

3=H

3C=
+ 0=−1

3=−1H

3C=−1
+ · · · + 01

3H

3C
+ 00H = 5 , where (6.1)

5 ≡ 1<
3<D

3C<
+ 1<−1

3<−1D

3C<−1
+ · · · + 11

3D

3C
+ 10D. (6.2)

Note that the forcing function 5 is related to but distinct from the input D. This
terminology proves rather important.

https://sys.ricopic.one/2m
https://sys.ricopic.one/2m

136 Chapter 6

6.1 Characteristic Transient Responses LINK
SE

A system’s characteristic responses are responses to specific forcing
functions—called the singularity functions. The reasons these are
“characteristic” are:

1. the singularity functions model commonly interesting system inputs (e.g. a
sudden change in the input), and so they can be said to characterize inputs, and

2. the ways in which the system responds to these specific functions reveal
aspects of the system (e.g. how quickly it responds), so these responses can
be said to characterize systems.

Now, onemay object that equation (6.2) shows that a forcing function needn’t look
anything like an input due to its being composed of a sum of scaled copies of the
input and its derivatives. Yes, but given two key properties of linear, time-invariant
(LTI) systems—superposition and the differentiation property—, knowing a sys-
tem’s response H1 to a forcing function 51 allows us to construct its response to that
input (that is, H2 for input D2 = 51) as

H2 = 1<
3<H1

3C<
+ 1<−1

3<−1H1

3C<−1
+ · · · + 11

3H1

3C
+ 10H1.

I know.
There are three singularity functions, which are now defined as piecewise

functions of time C.
First, the unit impulse orDirac delta function1 � is defined as zero everywhere

except at C = 0, when it is undefined, and has unity as its integral over all time. When
� is scaled (e.g. 5�), its integral scales by the same factor. This strange little beast
models a sudden “spike” in the input.
Second, the unit step function DB is defined as zero for C ≤ 0 and unity for C > 0. It

models a sudden change in the input. Scaling it scales the amount of change. Often,
this is considered to be the gold-standard for characterizing the transient response
of a system.
Third, the unit ramp function DA is defined as zero for C ≤ 0 and C for C > 0—that

is, it is linearly increasing with unity slope. It models a steadily increasing input
and is probably the least useful of the singularity functions. Scaling it scales the
rate of steady change.

6.2 First-Order Systems in Transient Response

1. Technically, � is a distribution, not a function, but we use the common, confusing, comfortably couched
terminology.

https://sys.ricopic.one/se
https://sys.ricopic.one/se
http://ricopic.one/resources/mind_blown.gif

Qualities of Transient Response 137LINK
LV

First order systems have input-output differential equations of the form

�
3H

3C
+ H = 11

3D

3C
+ 10D

with � ∈R called the time constant of the system. Systems with a single energy
storage element—such as those with electrical or thermal capacitance—can be
modeled as first-order.
The characteristic equation yields a single root �=−1/�, so the homogeneous

solution Hℎ , for constant � ∈R, is
Hℎ(C)=� 4−C/�.

6.2.1 Free Response

The free response Hfr(C) of a system is its response to initial conditions and no
forcing (5 (C)= 0). This is useful for two reasons:

1. perturbations of the system from equilibrium result in free response and
2. from superposition, the free response can be added to a forced response to

find the specific response: H(C)= Hfr(C) + Hfo(C). This allows us to use tables of
solutions like table 6.1 to construct solutions for systems with nonzero initial
conditions with forcing.

The free response is found by applying initial conditions to the homogeneous
solution. With initial condition H(0), the free response is

Hfr(C)= H(0) 4−C/� ,
which begins at H(0) and decays exponentially to zero.

6.2.2 Step Response

In what follows, we develop forced response Hfo(C) solutions, which are the specific
solution responses of systems to given inputs and zero initial conditions: all initial
conditions set to zero.
If we consider the common situation that 11 = 0 and D(C)= DB(C) for some ∈R,

the solution to section 6.2 is

Hfo(C)= 10(1− 4−C/�).
The non-steady term is simply a constant scaling of a decaying exponential.

https://sys.ricopic.one/lv
https://sys.ricopic.one/lv

138 Chapter 6

transient steady-state
H(0)

� 2� 3� 4� 5� 6� 7� 8�

0.2 10

0.4 10

0.6 10

0.8 10

 10

time (s)

forcing 10DB (C)
free response Hfr(C)
forced response Hfo(C)
Hfr(C) + Hfo(C)

Figure 6.1. Free and forced responses and their sum for a first order system with input
D(C)= DB (C), initial condition H(0), and 11 = 0.

A plot of the step response is shown in figure 6.1. As with the free response,
within 5� the transient response is less than 1% of the difference between H(0) and
steady-state.

6.2.3 Impulse and Ramp Responses

The response to all three singularity inputs are included in table 6.1. These can be
combined with the free response of section 6.2.1 using superposition.

Table 6.1: first-order system characteristic and total forced responses for singularity
inputs. The relevant differential equation is of the standard form � ¤H + H = 5 .

D(C) characteristic response total forced response Hfo for C ≥ 0
5 (C)= D(C) 5 (C)= 11 ¤D + 10D

�(C) 1
�
4−C/�

11

�
�(C) +

(
10

�
− 11

�2

)
4−C/�

DB(C) 1− 4−C/� 10 −
(
10 −

11

�

)
4−C/�

DA(C) C − �(1− 4−C/�) 10C + (11 − 10�)(1− 4−C/�)

Qualities of Transient Response 139

Example 6.1

Consider a parallel RC-circuit with input current �((C)= 2DB(C)A, initial capacitor
voltage E�(0)= 3 V, resistance '= 1000 Ω, and capacitance � = 1 mF. Proceeding
with the usual analysis would produce the io differential equation

�
3E�

3C
+ E�/'= �(.

Use table 6.1 to find E�(C).

1. First, we recognize that the input is D = �(and the output is H = E� .
2. Rewrite the differential equation in standard form:

'�
3E�

3C
+ E� ='�(.

From inspection:

�='� and 5 (C)='�((C)= 2'DB(C).
3. We choose to use superposition and table 6.1. From section 6.2.1, the free

response is

Hfr(C)= E�(0)4−C/� = 34−C/�.

From table 6.1, the characteristic response for 5 (C)= DB(C) is
Hch(C)= 1− 4−C/�.

Since our 5 (C)= 2'DB(C), the forced response is
Hfo(C)= 2'Hch(C)= 2'(1− 4−C/�).

Finally, the specific solution for H(C)= E�(C) is
H(C)= Hfr(C) + Hfo(C)

= 34−C/� + 2'(1− 4−C/�)

= 2'+ (3− 2')4−C/�.

140 Chapter 6

6.3 Second-Order Systems in Transient Response LINK
SD

Second-order systems have input-output differential equations of the
form

32H

3C2
+ 2�$=

3H

3C
+$2

=H = 5 (C)

where $= is called the natural frequency, � is called the (dimensionless) damping

ratio, and 5 is a forcing function that depends on the input D as

5 (C)= 12
32D

3C2
+ 11

3D

3C
+ 10D.

Systems with two energy storage elements—such as those with an inertial element
and a spring-like element—can be modeled as second-order.
For distinct roots (�1 ≠�2), the homogeneous solution is, for some real constants

�1 and �2,
Hℎ(C)=�14

�1C +�24
�2C

where
�1, �2 =−�$= ±$=

√
�2 − 1.

6.3.1 Free Response

The free response Hfr is found by applying initial conditions to the homogeneous
solution. With initial conditions H(0) and ¤H(0)= 0, the free response is

Hfr(C)= H(0)
1

�2 −�1

(
�24

�1C −�14
�2C

)
.

There are five possibilities for the location of the roots �1 and �2, all determined by
the value of �.

� ∈ (−∞, 0): unstable This case is very undesirable because it means our system is
unstable and, given any nonzero input or output, will explode to infinity.

�= 0: undamped An undamped system will oscillate forever if perturbed from
zero output.

� ∈ (0, 1): underdamped Roughly speaking, underdamped systems oscillate, but
not forever. Let’s consider the form of the solution for initial conditions and
no forcing. The roots of the characteristic equation are

�1, �2 =−�$= ± 9$=

√
1− �2 =−�$= ± 9$3

where the damped natural frequency $3 is defined as

$3 ≡$=

√
1− �2.

From Equation section 6.3.1 for the free response, using Euler’s formulas to
write in terms of trigonometric functions, and the initial conditions H(0) and

https://sys.ricopic.one/sd
https://sys.ricopic.one/sd

Qualities of Transient Response 141

¤H(0)= 0, we have

Hfr(C)= H(0)
4−�$= C√
1− �2

cos($3C +#)

where the phase # is

#=− arctan
�√

1− �2
.

This is an oscillation that decays to the value it oscillates about, H(C)|C→∞ = 0.
So any perturbation of an underdamped system will result in a decaying
oscillation about equilibrium.

�= 1: critically damped In this case, the roots of the characteristic equation are
equal:

�1 =�2 =−$=

So wemust modify section 6.3 with a factor of C for the homogeneous solution.
The free response for initial conditions H(0) and ¤H(0)= 0, we have

Hfr(C)= H(0) (1+$=C) 4−$= C .
This decays without oscillation, but just barely.

� ∈ (1,∞): overdamped Here the roots of the characteristic equation are distinct and
real. From Equation section 6.3.1 with free response to initial conditions H(0)
and ¤H(0)= 0, we have the sumof two decaying real exponentials. This response
will neither overshoot nor oscillate—like the critically damped case—but with
even less gusto.

figure 6.2 displays the free response results. Note that a small damping ratio
results in overshooting and oscillation about the equilibrium value. In contrast, large
damping ratio results in neither overshoot nor oscillation. However, both small
and large damping ratios yield responses that take longer durations to approach
equilibrium than damping ratios near unity. In terms of system performances, there
are tradeoffs on either side of �= 1. Slightly less than one yields faster responses
that overshoot a small amount. Slightly greater than one yields slower responses
less prone to oscillation.

142 Chapter 6

0 2 4 6 8 10 12 14 16 18 20

0

1

dimensionless time $= C

n
o
rm

al
iz
ed

o
u
tp
u
t
H
fr
(C
)/
H
(0
)

�= .1
�= .3
�= .5
�= 1
�= 2
�= 4
�= 6

Figure 6.2. Free response Hfr(C) of a second-order systemwith initial conditions H(0) and
¤H(0)= 0 for different values of �. Underdamped, critically damped, and overdamped
cases are displayed.

6.3.2 Step Response

Second-order systems are subjected to a variety of forcing functions 5 . In this
lecture, we examine a common one: step forcing. In what follows, we develop
forced response Hfo(C) solutions.
Unit step forcing of the form 5 (C)= DB(C), where DB is the unit step function,models

abrupt changes to the input. The solution is found by applying zero initial condi-
tions (H(0)= 0 and ¤H(0)= 0) to the general solution. If the roots of the characteristic
equation �1 and �2 are distinct, the forced response is

Hfo(C)=
1
$2
=

(
1− 1

�2 −�1

(
�24

�1C −�14
�2C

))
where

�1, �2 =−�$= ±$=

√
�2 − 1.

Once again, there are five possibilities for the location of the roots of the characteristic
equation �1 and �2, all determined by the value of �. However, there are three stable
cases: underdamped, critically damped, and overdamped.

� ∈ (0, 1) underdamped In this case, the roots are distinct and complex:

�1, �2 =−�$= ± 9$3 .

Qualities of Transient Response 143

From section 6.3.2, the forced step response is

Hfo(C)=
1
$2
=

(
1− 4−�$= C√

1− �2
cos($3C +#)

)
where the phase # is

#=− arctan
�√

1− �2
.

This response overshoots, oscillates about, and decays to 1/$2
= .

�= 1 critically damped The roots are equal and real:

�1, �2 =−$=

so the forced step of section 6.3.2 must be modified; it reduces to

Hfo(C)=
1
$2
=

(
1− 4−$= C(1+$=C)

)
.

This response neither oscillates nor overshoots its steady-state of
1
$2
=

, but just

barely.
� ∈ (1,∞) overdamped In this case, the roots are distinct and real, given by

section 6.3.2. The forced step given by section 6.3.2 is the sum of two decaying
real exponentials. These responses neither overshoot nor oscillate about their
steady-state of 1/$2

= . With increasing �, approach to steady-state slows.

figure 6.3 displays the forced step response results. These responses are inverted
versions of the free responses of ??. Note that a small damping ratio results in
overshooting and oscillation about the steady-state value. In contrast, large damping
ratio results in neither overshoot nor oscillation. However, both small and large
damping ratios yield responses that take longer durations to approach equilibrium
than damping ratios near unity. For this reason, the damping ratio of a system
should be close to �= 1. There are tradeoffs on either side of one. Slightly less yields
faster responses that overshoot a small amount. Slightly greater than one yields
slower responses less prone to oscillation.

144 Chapter 6

0 2 4 6 8 10 12 14 16 18 20

0

1

dimensionless time $= C

n
o
rm

al
iz
ed

o
u
tp
u
t
H
fr
(C
)·
$

2 =
�= .1
�= .3
�= .5
�= 1
�= 2
�= 4
�= 6

Figure 6.3. Forced step response Hfo(C) of a second-order system for different values of
�. Underdamped, critically damped, and overdamped cases are displayed.

6.3.3 Impulse and Ramp Responses

The response to all three singularity inputs are included in table 6.2. These can be
combined with the free response of section 6.2.1 using superposition.

Qualities of Transient Response 145

Table 6.2: responses of system
32H

3C2
+ 2�$=

3H

3C
+$2

=H = 5 to different singularity forcing.

Note that �1 =−1/�1, �2 = 1/�2, and #=− arctan(�/
√

1− �2).

damping 5 (C) characteristic response

0 ≤ � < 1 �(C) 4−�$= C

$=

√
1− �2

sin($3C)

DB(C)
1
$2
=

(
1− 4−�$= C√

1− �2
cos($3C +#)

)
DA(C)

1
$2
=

(
C + 4−�$= C

$=

(
2� cos $3C +

2�2 − 1√
1− �2

sin $3C

)
− 2�
$=

)
�= 1 �(C) C4−$= C

DB(C)
1
$2
=

(
1− 4−$= C −$=C4

−$= C)
DA(C)

1
$2
=

(
C + 2

$=
4−$= C + C4−$= C − 2

$=

)
� > 1 �(C) 1

2$=

√
�2 − 1

(
4−C/�1 − 4−C/�2

)
DB(C)

1
$2
=

(
1− $=

2
√
�2 − 1

(
�14

−C/�1 − �24
−C/�2

))
DA(C)

1
$2
=

(
C − 2�

$=
+ $=

2
√
�2 − 1

(
�2

14
−C/�1 − �2

24
−C/�2

))

6.3.4 An Example with Superposition

The results of the above are powerful not so much in themselves, but when they
are wielded with the principle of superposition, as the following example shows.

Example 6.2

In magnetic resonance force microscopy (MRFM), the primary detector is a
small cantilever beam with a magnetic tip. Model the beam as a spring-mass-
damper systemwithmass< = 6 pg,a spring constant : = 15mN/m, and damping
coefficient �= 37.7 · 10−15 N·s/m. Magnetic input forces on the beam D(C) are
applied directly to the magnetic tip. That is, a Newtonian force-analysis yields

146 Chapter 6

the input-output ODE
< ¥H + � ¤H + :H = D,

where H models the motion of the tip.

1. What is the natural frequency $=?
2. What is the damping ratio �?
3. Find the free response for initial conditions H(0)= 10 nm and ¤H(0)= 0.
4. Find the impulse (forced) response for input D(C)= 3�(C).
5. Find the total response for the initial condition and forcing, from above,

are both applied.

a. One pg= 10−12g= 10−15kg.

1. Rewrite the differential equation in standard form:

¥H + �

<
¥H + :

<
H =

1
<
D

¥H + 2�$= ¥H +$2
=H =

1
<
D

Equate the coefficients:

�

<
= 2�$= and

:

<
=$2

= .

Solving for $= ,

$= =

√
:

<
= 62.8 krad/s.

2. Solving for �,

�=
�

2$=<

=
�

2<
√
:/
√
<

=
�

2
√
:<

= 0.00005.

This is very underdamped.
3. Superposition and tables. Don’t forget about 1/<.

Qualities of Transient Response 147

6.4 Problems LINK
92

Problem 6.1 LINKTRUMAN Consider the i/o ODE with independent variable C and
dependent variable H:

7 ¤H + H = ¤D − 5D

with input
D(C)= DA

the unit ramp function.

1. What is the time constant �?
2. Find the characteristic response HA of the system to the unit ramp input.

Stongly consider using table 6.1.
3. What is the forced response Hfo to the same input?
4. What is the free response of the Hfr to initial condition H(0)= 8?
5. What is the total response HC when both the input D and initial condition H(0)

are applied simultaneously?

Problem 6.2 LINKMOGUL Consider the i/o ODE with independent variable C and
dependent variable H:

¥H + 5 ¤H + 25H = 2 ¤D + 3D

with input
D(C)= DB

the unit step function.

1. What are the natural frequency $= and damping ratio �?
2. Find the characteristic response of the system to the unit step input. Stongly

consider using table 6.2.
3. What is the forced response to the unit step input?

Problem 6.3 LINKKIBBLE Consider the input-output ODE with independent variable
C, dependent variable (output) H(C), and input D(C):

¤H + 3H = 2 ¤D + D.
1. What is the time constant �?
2. Find the characteristic response HB of the system to the unit step input D(C)=

DB(C). Stongly consider using table 6.1.
3. What is the forced response Hfo to the input D(C)= 3DB(C)?
4. What is the free response of the Hfr to initial condition H(0)=−4?

https://sys.ricopic.one/92
https://sys.ricopic.one/92
https://sys.ricopic.one/truman
https://sys.ricopic.one/mogul
https://sys.ricopic.one/kibble

148 Chapter 6

5. What is the total response HC when both the input D from item 3. and initial
condition H(0) are applied simultaneously?

Problem 6.4 LINKBIOLOGY Consider a system with the following input-output ODE
with independent variable C, dependent variable (output) H(C), and input D(C):

¥H + 5 ¤H + 25H = ¤D + 7D

1. What are the natural frequency $= and damping ratio �?
2. Find the characteristic response H� of the system to the unit impulse forcing

5 (C)= �(C). Hint: Stongly consider using table 6.2.
3. What is the forced response Hfo to the input D(C)= �(C)?
4. What is the free response Hfr to initial condition H(0)= 11?
5. What is the total response HC when both the input D from item 3. and initial

condition from item 4. are applied simultaneously?
6. For a constant input D(C)= D, what is the equilibrium output H(C)= H?
7. Demonstrate the stability, marginal stability, or instability of the system.

https://sys.ricopic.one/biology

7 State-Space Response LINK
QQ

Recall that, for a state-spacemodel, the state x, input u, and output y vectors interact
through two equations:

3x
3C

= f (x , u , C) (7.1)

y= g(x , u , C) (7.2)

where f and g are vector-valued functions that depend on the system. Together,
they comprise what is called a state-space model of a system.
In accordance with the definition of a state-determined system, given an initial

condition x(C0) and input u, the state x is determined for all C ≥ C0. Determining
the state response requires the solution—analytic or numerical—of the vector
differential equation equation (7.1).
The second equation equation (7.2) is algebraic. It expresses how the output y can

be constructed from the state x and input u. This means we must first solve the
state equation equation (7.1) for x, then the output y is given by equation (7.2).
Just because we know that, for a state-determined system, there exists a solution to

equation (7.1), doesn’tmeanwe knowhow to find it. In general, f :R= ×RA ×R→R=
and g :R= ×RA ×R→R< can be nonlinear functions.1 We don’t know how to solve
most nonlinear state equations analytically. An additional complication can arise
when, in addition to states and inputs, system parameters are themselves time-
varying (note the explicit time C argument of f and g). Fortunately, often a linear,
time-invariant (LTI) model is sufficient.
Recall that an LTI state-space model is of the form

3x
3C

=�x + �u (7.3)

y=�x +�u , (7.4)

1. Technically, since x and u are themselves functions, f and g are functionals.

https://sys.ricopic.one/qq
https://sys.ricopic.one/qq

150 Chapter 7

where �, �, �, and � are constant matrices containing system lumped-parameters
such as mass or inductance. See ?? for details on the derivation of such models.
In this chapter, we learn to solve equation (7.3) for the state response and substi-

tute the result into equation (7.4) for the output response. First, we learn an analytic
solution technique. Afterward,we learn simple software tools for numerical solution
techniques.

7.1 Solving for the State-Space Response LINK
QA

In this lecture, we solve the state equation for the state response x(C)
and substitute this into the output equation for the output response
y(C).

7.1.1 State Response

The state equation can be solved by a synthesis of familiar techniques, as follows.
First, we rearrange:

3x
3C

−�x = �u.

An integrating factor would be clutch, but what should it be? It looks analogous to
a scalar ODE that would use the natural exponential exp(−0C) (for positive constant
0), but we have a vector ODE. We need a matrix-version of the exponential. Recall
that a series definition of the scalar exponential function exp :C→C is

exp I =
∞∑
:=0

1
:!
I: .

Wedefine thematrix exponential exp :C= ×C= →C= ×C= (we use the same symbol)
to be, for = × = complex matrix /,

exp/ =

∞∑
:=0

1
:!
/: .

because why not? For the hell of it, let’s see if the matrix exponential

exp(−�C)
works as an integrating factor, if for no other reason than it was constructed
to be a sort of matrix-analog of exp(−0C), which would work for the scalar case.

https://sys.ricopic.one/qa
https://sys.ricopic.one/qa

State-Space Response 151

Premultiplying2 section 7.1.1 on both sides:

exp(−�C) 3x
3C

− exp(−�C)�x = exp(−�C)�u ⇒

3

3C
(exp(−�C)x)= exp(−�C)�u.

Rearranging and integrating over the interval (0, C),
3 (exp(−�C)x)= exp(−�C)�u3C ⇒

ˆ C

0
3 (exp(−��)x(�))=

ˆ C

0
exp(−��)�u(�)3� ⇒

exp(−�C)x − x(0)=
ˆ C

0
exp(−��)�u(�)3�. (exp(0)= �)

This last expression can be solved for x, the state response solution. Before we do
this, however, let’s define the matrix function called the state transition matrix Φ

to be the matrix-valued function

Φ(C)= exp(�C),
Substituting Φ and solving,

x =Φ(C)x(0) +Φ(C)
ˆ C

0
Φ(−�)�u(�)3� (7.5)

=Φ(C)x(0) +
ˆ C

0
Φ(C − �)�u(�)3�. (7.6)

Note that the first term of each version of equation (7.5) is the free response (due to
initial conditions) and the second term is the forced response (due to inputs).

7.1.2 State Transition Matrix

The state transition matrix Φ introduced in section 7.1.1 wound up being a key
aspect of the response, which is why we call it that. We used two of its properties
(in matrix exponential form) during that derivation: the initial-value

Φ(0)= � (where � is the identity matrix)

and the inverse
Φ−1(C)=Φ(−C).

2. As an exercise for the reader, prove that 3 exp(−�C)/3C =− exp(−�C)�, which is an assumption we
make in this step.

152 Chapter 7

There is a third property that might be called the bootstrapping property: for
time intervals ΔC8 ,

Φ(ΔC1 +ΔC2 + · · ·)=Φ(ΔC1)Φ(ΔC2) · · · .
This allows one to compute the state transition matrix3 incrementally, from one
previously computed.
A final property we’ll consider is the special-case of a diagonal � with diagonal

elements 011 , 022 , · · · , 0== , which yields a diagonal state transition matrix

Φ(C)=


4 011C 0

4 022C

. . .

0 4 0== C


.

The last property turns out to be quite convenient for deriving Φ for a given
system, as we will see in ??. For now, we must rely on the definition of Φ from
section 7.1.1 and the series definition of the matrix exponential from section 7.1.1.
This requires us to derive the first several terms of the series solution and attempt
to divine the corresponding scalar exponential series, a rather tedious task. Other
than to familiarize ourselves with the definition through exercises, we prefer the
derivation method of ??.

7.1.3 Output Response

The output response y(C) requires little additional solution: assuming we have
solved for the state response x(C), the output is given in the output equation
equation (7.4). Through direct substitution, we find the output response solution

y(C)=�x(C) +�u(C) (7.7)

=�Φ(C)x(0) +�
ˆ C

0
Φ(C − �)�u(�)3�+�u(C). (7.8)

3. As is common, we refer to it as the “state transition matrix at a certain time,” but, technically, it’s the
image of the state transition matrix (which is actually a matrix-valued function) at a certain time. It is
good to occasionally acknowledge the violence we do to math.

State-Space Response 153

7.2 Linear Algebraic Eigenproblem LINK
DS

The linear algebraic eigenproblem can be simply stated. For = × =
real matrix �, = × 1 complex vector m, and � ∈C, m is defined as an
eigenvector of � if and only if it is nonzero and

�m =�m

for some �, which is called the corresponding eigenvalue. That is, m is an eigenvec-
tor of� if its linear transformation by� is equivalent to its scaling; i.e. an eigenvector
of � is a vector of which � changes the length, but not the direction.
Since a matrix can have several eigenvectors and corresponding eigenvalues, we

typically index them with a subscript; e.g. m8 pairs with �8 .

7.2.1 Solving for Eigenvalues

section 7.2 can be rearranged:

(�� −�)m = 0.

For a nontrivial solution for m,

det(�� −�)= 0,

which has as its left-hand-side a polynomial in � and is called the characteristic
equation. We define eigenvalues to be the roots of the characteristic equation.

Box 7.1

eigenvalues and roots of the characteristic equation
If � is taken to be the linear state-space representation �, and the state-space
model is converted to an input-output differential equation, the resulting ODE’s
“characteristic equation” would be identical to this matrix characteristic equation.
Therefore, everything we already understand about the roots of the “characteris-
tic equation” of an i/o ODE—especially that they govern the transient response
and stability of a system—holds for a system’s �-matrix eigenvalues.

Here we consider only the case of = distinct eigenvalues. For eigenvalues of
(algebraic) multiplicity greater than one (i.e. repeated roots), see the discussion of
??.

https://sys.ricopic.one/ds
https://sys.ricopic.one/ds

154 Chapter 7

7.2.2 Solving for Eigenvectors

Each eigenvalue �8 has a corresponding eigenvector m8 . Substituting each �8 into
section 7.2.1, one can solve for a corresponding eigenvector. It’s important to note
that an eigenvector is unique within a scaling factor. That is, if m8 is an eigenvector
corresponding to �8 , so is 3m8 .4

Example 7.1

Let

�=

[
2 −4
−1 −1

]
.

Find the eigenvalues and eigenvectors of �.

4. Also of note is that �8 and m8 can be complex.

State-Space Response 155

Figure 7.1. Solution.

Several computational software packages can easily solve for eigenvalues and
eigenvectors. See ?? for instruction for doing so in Matlab and Python.

7.3 Computing Eigendecompositions LINK
2Z

Computing eigendecompositions is rather straightforward with a
numerical or symbolic computing tool such as those available in Mat-
lab or Python. The following sections show how to use Matlab and Python to
compute numerical and symbolic eigendecompositions.

https://sys.ricopic.one/2z
https://sys.ricopic.one/2z

156 Chapter 7

7.3.1 Matlab Eigendecompositions

7.3.1.1 Matlab Numerical Eigendecompositions Consider the following matrix
A.
A = [...

-3, 5, 9; ...
0, 2, -10; ...
5, 0, -4 ...

];

What are its eigenvalues and eigenvectors? Let’s use the MATLAB function eig.
From the documentation:

[V,D] = EIG(A) produces a diagonal matrix D of eigenvalues and a
full matrix V whose columns are the corresponding eigenvectors so
that A*V = V*D.

Let’s try it.

[Ve,De] = eig(A);
disp(vpa(Ve,3))

[-0.769, 0.122 - 0.537i, 0.122 + 0.537i]
[0.381, 0.767, 0.767]
[0.514, - 0.0953 - 0.316i, - 0.0953 + 0.316i]

The eigenvalues are on the diagonal of De.

disp(diag(De))

-11.487 + 0i
3.2433 + 4.122i
3.2433 - 4.122i

The eigenevectors are normalized to have unit length.

disp(norm(Ve(:,3))) % for instance

1

7.3.1.2 Matlab Symbolic Eigendecompositions Sometimes symbolic parame-
ters in a matrix require symbolic eigendecomposition. In Matlab, this requires the
symbolic toolbox.
First, declare symbolic variables.

syms a b c

Now form a symbolic matrix.

State-Space Response 157

A = [...
a,b; ...
0,c; ...

]

A =
[a, b]
[0, c]

The function eig is overloaded and if A is symbolic, the symbolic routine is called,
which has a syntax similar to the numerical version above.

[Ve_sym,De_sym] = eig(A)

Ve_sym =
[1, -b/(a - c)]
[0, 1]
De_sym =
[a, 0]
[0, c]

Again, the eigenvalues are on the diagonal of the eigenvalue matrix.

disp(diag(De_sym))

a
c

7.3.2 Python Eigendecompositions

In Python, we can use the numpy package for numerics and the sympy package for
symbolics.

7.3.2.1 Python Numerical Eigendecompositions In Python, we first need to load
the appropriate packages.

import numpy as np # for numerics
from numpy import linalg as la # for eig
from IPython.display import display, Markdown, Latex # prty
np.set_printoptions(precision=3) # for pretty

Consider the same numerical A matrix from the section above. Create it as a
numpy.array object.

158 Chapter 7

A = np.array(
[
[-3, 5, 9],
[0, 2, -10],
[5, 0, -4],

]
)

The numpy.linalgmodule (loaded as la) gives us access to the eig function.

e_vals,e_vecs = la.eig(A)
print(f'e-vals: {e_vals}')
print(f'modal matrix:\n {e_vecs}')

e-vals: [-11.487+0.j 3.243+4.122j 3.243-4.122j]
modal matrix:
[[-0.769+0.j 0.122-0.537j 0.122+0.537j]
[0.381+0.j 0.767+0.j 0.767-0.j]
[0.514+0.j -0.095-0.316j -0.095+0.316j]]

Note that the eigenvalues are returned as a one-dimensional array, not along the
diagonal of a matrix as with Matlab.

print(f"the third eigenvalue is {e_vals[2]:.3e}")

the third eigenvalue is 3.243e+00-4.122e+00j

7.3.2.2 Python Symbolic Eigendecompositions We use the sympy package for
symbolics.

import sympy as sp

Declare symbolic variables.

sp.var('a b c')

(a, b, c)

Define a symbolic matrix A.

A = sp.Matrix([
[a,b],
[0,c]

])
display(A)[
0 1

0 2

]
The sympy.Matrix class has methods eigenvals and eigenvects. Let’s con-

sider them in turn.

A.eigenvals()

State-Space Response 159

{a: 1, c: 1}

What is returned is a dictionary with our eigenvalues as its keys and the
multiplicity (how many) of each eigenvalue as its corresponding value.
The eigenvectsmethod returns even more complexly structured results.

A.eigenvects()

[(a, 1, [Matrix([
[1],
[0]])]), (c, 1, [Matrix([
[-b/(a - c)],
[1]])])]

This is a list of tuples with structure as follows.
(<eigenvalue>,<multiplicity>,<eigenvector>)

Each eigenvector is given as a list of symbolic matrices.
Extracting the second eigenvector can be achieved as follows.

A.eigenvects()[1][2][0][
− 1
0−2
1

]
7.4 Diagonalizing Basis LINK

YV
It is useful to transforma system’s state vector x into a special basis that
diagonalizes—leaves nonzero components along only the diagonal—
the system’s �-matrix. For systems with = distinct eigenvalues, to which we limit
ourselves in this discussion,5 this is always possible. In diagonalized form, it will
be relatively easy to solve for the state transition matrix Φ.

7.4.1 Changing Basis in the State Equation

As with all basis transformations, the basis transformation we seek can be written

x =%x′ ⇒ x′=%−1x ,

where % is the transformation matrix, x is a representation of the state vector in the
original basis, and x′ is a representation of the state vector in the new basis.6

5. See ?? for general considerations.

6. We are being a bit fast-and-loose with terminology here: a vector is an object that does not change
under basis transformation, only its components and basis vectors do. However, we use the common
notational and terminological abuses.

https://sys.ricopic.one/yv
https://sys.ricopic.one/yv

160 Chapter 7

Substituting this transformation into the standard linear state-model equations
yields the model

¤x′=%−1�%︸ ︷︷ ︸
�′

x′+ %−1�︸︷︷︸
�′

u (7.9)

y= �%︸︷︷︸
�′

x′+ �︸︷︷︸
�′

u. (7.10)

7.4.2 Modal and Eigenvalue Matrices

Let a state equation have matrix �with = distinct eigenvalues (�8) and eigenvectors
(m8). Let the eigenvalue matrix Λ be defined as

Λ=


�1 0

�2
. . .

0 �=


.

Furthermore, let themodal matrix " be defined as

" =

 m1 m2 · · · m=


7.4.3 Diagonalization of the State Equation

Let the modal matrix " be the transformation matrix for our state-model. Then7

x′="−1x.
The state equation becomes

¤x′="−1�"x′+"−1�u.

The eigenproblem implies that

�
[
m1 m2 · · · m=

]
=

[
m1 m2 · · · m=

]
Λ ⇒

�" ="Λ ⇒

"−1�" ="−1"Λ

=Λ.

That is, �′=Λ! Recall that Λ is diagonal; therefore, we have diagonalized the
state-space model. In full-form, the diagonalized model is

7. As long as there are = distinct eigenvalues, " is invertible.

State-Space Response 161

¤x′= Λ︸︷︷︸
�′

x′+"−1�︸︷︷︸
�′

u (7.11)

y= �"︸︷︷︸
�′

x′+ �︸︷︷︸
�′

u. (7.12)

7.4.4 Computing the State Transition Matrix

Recall our definition of the state transition matrix Φ(C)= 4�C . Directly applying this
to the diagonalized system of equation (7.11),

Φ′(C)= 4ΛC (7.13)

=


4�1C 0

4�2C

. . .

0 4�= C


. (7.14)

In this last equality, we have used the diagonal property of the state transition
matrix, defined in ??.
Recall that the free response solution to the state equation is given by the initial

condition and state transition matrix, so

x′fr(C)=Φ′(C)x′(0) (7.15)

= G′1(0)4�1C + G′2(0)4�2C + · · · + G′=(0)4�= C (7.16)

where the initial conditions are x′(0)="−1x(0). We have completely decoupled
each state’s free response, one of the remarkable qualities of the diagonalized
system.
At this point, one could simply solve the diagonalized system for x′(C), then

convert the solution to the original basis with x(C)="x′(C).
Sometimes, we might prefer to transform the diagonalized-basis state transition

matrix into the original basis. The following is a derivation of that transformation.
Beginning with the free response solution in the diagonalized-basis and trans-

forming the equation into the original basis, we find an expression for the original
state transition matrix, as follows.

x′fr(C)=Φ′(C)x′(0) ⇒

"−1xfr(C)=Φ′(C)"−1x(0) ⇒

xfr(C)="Φ′(C)"−1︸ ︷︷ ︸
Φ(C)

x(0).

162 Chapter 7

This last expression is just the free response solution in the original basis, so we can
identify

Φ(C)="Φ′(C)"−1.

This is a powerful result. section 7.4.4 is the preferred method of deriving the state
transition matrix for a given system. The eigenvalues give Φ′ and the eigenvectors
give ".

Example 7.2

For the state equation

¤x =
[
−2 2
2 −3

]
x +

[
1
−1

]
u

find the state’s free response to initial condition x(0)=
[
2 −1

]>
.

State-Space Response 163

Figure 7.2. Solution.

Then just use section 7.4.4 and

xfr(C)=Φ(C)x(0).

7.5 A Vibration Example with Two Modes LINK
27

In the following example, we explore the amechanical vibration exam-
ple, especially with regard to its modes of vibration. Both undamped
and (under)damped cases are considered and we discover the effects of damping.

https://sys.ricopic.one/27
https://sys.ricopic.one/27

164 Chapter 7

Example 7.3

Consider the system of figure 7.3 in which a velocity source +(is applied to
spring 1, which connects to mass <1, which in turn is connected via spring 2

and damper � to mass <2 which.a

<2<1

:1

:2

�2

+B

Figure 7.3. Schematic of the two-mass system.

The state-space model �-matrix is given as

�=


−�/<1 −1/<1 �/<1 0
 1 0 − 1 0
�/<2 1/<2 −�/<2 −1/<2

0 0 2 0


with parameters as follows:

• <1 = 0.1 kg
• <2 = 1.1 kg
• 1 = 8 N/m
• 2 = 9 N/m

Two different values for � will be considered: 0 and 20 N·s/m. We will explore
the modes of vibration in each case and plot a corresponding free response.

a. This common situation appears in a slightly modified form in (Rowell1997).

Setting up the Problem We analyze the problem with Python. First, we load
packages for symbolic, numeric, and graphical analysis, as follow:

import sympy as sp
import numpy as np
import matplotlib.pyplot as plt
from pprint import pprint

The �matrix is first defined symbolically.

State-Space Response 165

sp.var("m_1, m_2, K_1, K_2, B", real=True)
A = sp.Matrix([

[-B/m_1, -1/m_1, B/m_1, 0],
[K_1, 0, -K_1, 0],
[B/m_2, 1/m_2, -B/m_2, -1/m_2],
[0, 0, K_2, 0]

])

Now define dictionaries for the parameter values.

p = {
m_1: 0.1, # kg
m_2: 1.1, # kg
K_1: 8, # N/m
K_2: 9 # N/m

}
pB1 = {B: 0} # N/(rad/s), without damping
pB2 = {B: 20} # N/(rad/s), with damping

Without Damping Without damping, we expect the system to be marginally
stable and have two pairs of second-order undamped subsystems with their
own unique natural frequencies. The numerical �matrix can be computed by
substituting in the parameters in p and pB1, as follows:

A_1 = np.array(A.subs(p).subs(pB1), dtype=float)
print(A_1)

[[0. -10. 0. 0.]
[8. 0. -8. 0.]
[0. 0.90909091 0. -0.90909091]
[0. 0. 9. 0.]]

To explore the modes of vibration, we consider the eigendecomposition of �.

l_,M_ = np.linalg.eig(A_1)
thr = 1e-14 # threshold for calling something 0
l_.real[abs(l_.real) < thr] = 0.0 # zeroing small real parts

Let’s take a closer look at the eigenvalues.

print(l_)

[0.+9.38179379j 0.-9.38179379j 0.+2.726993j 0.-2.726993j]

So we have two pairs of purely imaginary eigenvalues. We would say, then,
that there are two “modes of vibration,” and similarly two second-order sys-
tems comprising this fourth-order system. When we consider what the natural
frequency and damping ratio is for each pair, we’re considering the natural
frequencies associated with each “mode of vibration.”

166 Chapter 7

For a second-order system (see ??), the roots of the characteristic equation,
which are equal to the eigenvalues corresponding to that second-order pair, are
given in terms of natural frequency $= and damping ratio �:

−$=�±$=

√
�2 − 1.

So the imaginary part is nonzero only when � ∈ [0, 1), that is, when the system
is underdamped or undamped. In this case,

−$=�± 9$=

√
1− �2. (7.17)

This, taken with the fact that the eigenvalues in l_ have zero real parts, implies
either $= or � is zero. But if $= is zero, the eigenvalues would all be zero, which
they are not. Therefore, �= 0 for both pairs of eigenvalues.
This leaves us with eigenvalues:

±9$=1 and ± 9$=2 .

So we can easily identify the natural frequencies $=1 and $=2 associated with
each mode as follows.

wn_1 = np.imag(l_[0]);
wn_2 = np.imag(l_[2]);
print(f"Natural frequencies (rad/s): {wn_1} and {wn_2}")

Natural frequencies (rad/s): 9.38179378603641 and 2.726992997943728

Free Response Let’s compute the free response to some initial conditions. The
free state response is given by

x(C)=Φ(C)x(0).

So we can find this from the state transition matrix Φ, which is known from ??

to be .
First, we construct Φ′ symbolically.

sp.var("t", real=True)
L = sp.diag(*list(sp.Matrix(l_)*t)) # Eigenvalue matrix Λ (symbolic)
M = sp.Matrix(M_) # Modal matrix (symbolic)
Phi_p = sp.exp(L)
pprint(Phi_p)

State-Space Response 167

Matrix([
[1.0*exp(9.38179378603641*I*t), 0,

0, 0],↩→

[0, 1.0*exp(-9.38179378603641*I*t),
0, 0],↩→

[0, 0,
1.0*exp(2.72699299794373*I*t), 0],↩→

[0, 0,
0, 1.0*exp(-2.72699299794373*I*t)]])↩→

Now we can apply our transformation.

Phi = M*Phi_p*M.inv()

So our symbolic solution is to multiply the initial conditions by this matrix.

x_0 = sp.Matrix([[1], [0], [0], [0]]) # Initial condition
x = Phi*x_0 # Free response (symbolic, messy)

Plotting a Free Response Let’s make the symbolic solution into something we
can evaluate numerically and plot, a Numpy function.

x_fun = sp.lambdify(t,x)

Now let’s set up our time array and state solution for the plot.

t_ = np.linspace(0,5,300)
x_ = np.squeeze(

np.real(x_fun(t_))
)

Plot the state responses through time. The output is shown below.

fig, ax = plt.subplots()
ax.plot(t_, x_.T)
ax.set_xlabel('time (s)')
ax.set_ylabel('state free response')
ax.legend(['x_1', 'x_2', 'x_3', 'x_4'])

<matplotlib.legend.Legend at 0x127e64e30>

168 Chapter 7

Figure 7.4. State free response.

With a Little Damping Now consider the case when the damping coefficent �
is nonzero. Let’s recompute � and the eigendecomposition.

A_2 = np.array(A.subs(p).subs(pB2), dtype=float)
print(A_2)

[[-200. -10. 200. 0.]
[8. 0. -8. 0.]
[18.18181818 0.90909091 -18.18181818 -0.90909091]
[0. 0. 9. 0.]]

To explore the modes of vibration, we consider the eigendecomposition of �.

l_,M_ = np.linalg.eig(A_2)

Let’s take a closer look at the eigenvalues.

print(l_)

[-2.17777946e+02+0.j -1.53514941e-03+2.73840736j
-1.53514941e-03-2.73840736j -4.00801807e-01+0.j]

We can see that one of the second-order systems is now “overdamped” or,
equivalently, has split into two first-order systems. The other is now under-
damped (but barely damped). Let’s compute the natural frequency of the
remaining vibratory mode.

State-Space Response 169

wn_1 = np.imag(l_[1]);
print(f"Natural frequency (rad/s): {wn_1}")

Natural frequency (rad/s): 2.7384073593287575

So the effect of damping was to eliminate the ≈ 10 rad/s mode and leave us
with a slightly modified version of the ≈ 2.7 rad/s mode.

Free Response Let’s compute the free response to some initial conditions. The
free state response is given by

x(C)=Φ(C)x(0).

So we can find this from the state transition matrix Φ, which is known from ??

to be .
First, we construct Φ′ symbolically.

L = sp.diag(*list(sp.Matrix(l_)*t)) # Eigenvalue matrix Λ (symbolic)
M = sp.Matrix(M_) # Modal matrix (symbolic)
Phi_p = sp.exp(L)
pprint(Phi_p)

Matrix([
[1.0*exp(-217.777946076145*t),

0, 0,
0],

↩→

↩→

[0, 1.0*exp(t*(-0.00153514941381959 +
2.73840735932876*I)),
0, 0],

↩→

↩→

[0,
0, 1.0*exp(t*(-0.00153514941381959 - 2.73840735932876*I)),
0],

↩→

↩→

[0,
0, 0,
1.0*exp(-0.400801806845378*t)]])

↩→

↩→

Now we can apply our transformation.

Phi = M*Phi_p*M.inv()

So our symbolic solution is to multiply the initial conditions by this matrix.

x_0 = sp.Matrix([[1], [0], [0], [0]]) # Initial condition
x = Phi*x_0 # Free response (symbolic, messy)

Plotting a Free Response Let’s make the symbolic solution into something we
can evaluate numerically and plot, a Numpy function.

170 Chapter 7

x_fun = sp.lambdify(t,x)

Now let’s set up our time array and state solution for the plot.

t_ = np.linspace(0,5,300)
x_ = np.squeeze(

np.real(x_fun(t_))
)

Plot the state responses through time. The output is shown below.

fig, ax = plt.subplots()
ax.plot(t_, x_.T)
ax.set_xlabel('time (s)')
ax.set_ylabel('state free response')
ax.legend(['x_1', 'x_2', 'x_3', 'x_4'])

<matplotlib.legend.Legend at 0x137a6acf0>

Figure 7.5. State free response.

7.6 Analytic and Numerical Output Response Example in Matlab LINK
0P

In the following example, we explore the output response derived
both analytically and numerically in Matlab.

https://sys.ricopic.one/0p
https://sys.ricopic.one/0p

State-Space Response 171

Example 7.4

Consider a state-space model with the following standard matrices.

A = [...
-1, 3, 5, 7;...
0, -2, 0, 6;...
-2, 1, -3, 0;...
0, 1, 3, -4;...

];
n = length(A); % order
B = [...

0; 1; 0; 2; ...
];
C = eye(n);
D = zeros([n,1]);

Solve for the unit step response output y given the following initial condition.

x0 = [2;0;2;0];

Analytic Solution We use the solution of equation (7.7):

y(C)=�Φ(C)x(0) +�
ˆ C

0
Φ(C − �)�u(�)3�+�u(C).

First we need Φ(C). The “primed” basis requires the eigendecomposition.
[M,L] = eig(A);

We can find Φ from the primed-basis version Φ′, which is easy to compute.

Phi_p = @(t) diag(diag(exp(L*t)));

Now the basis transformation.

M_inv = M^-1; % compute just once, not on every call
Phi = @(t) M*Phi_p(t)*M_inv;

Declare symbolic variables.

syms T tt

Apply equation (7.7).

y_sym = C*Phi(tt)*x0 + C*int(Phi(tt-T)*B*1,T,0,tt) + D*1;

Convert this to a numerically evaluable function.

y_num = matlabFunction(y_sym);

172 Chapter 7

1 2 3 4 5 6 7 8

−2

2

4

time (s)an
al
y
ti
c
o
u
tp
u
t
re
sp
o
n
se

y1
y2
y3
y4

Figure 7.6. the analytic output response.

Plot it; the result is shown in figure 7.6.

figure
t_num = linspace(0,8,200);
plot(t_num,y_num(t_num),'linewidth',1)
xlabel('time (s)')
ylabel('analytic output response')
legend('y_1','y_2','y_3','y_4')

7.6.0.1 Numerical Solution

sys = ss(A,B,C,D);

Using lsimsing First, use lsim to compute the response numerically.

u_s = ones(size(t_num)); % a one for every time
y_lsim = lsim(sys,u_s,t_num,x0); % simulate

Now plot it; the result is shown in figure 7.7.

State-Space Response 173

1 2 3 4 5 6 7 8

−2

2

4

time (s)n
u
m
er
ic
al
o
u
tp
u
t
re
sp
o
n
se

y1
y2
y3
y4

Figure 7.7. numerical (using lsim) output response.

figure
plot(t_num,y_lsim,'linewidth',1)
xlabel('time (s)')
ylabel('numerical output response')
legend('y_1','y_2','y_3','y_4')
hgsave(h,'figures/temp');

1 2 3 4 5 6 7 8

−4

−2

2

4

6

8
·10−15

time (s)er
ro
r
in
o
u
tp
u
t
re
sp
o
n
se

y1
y2
y3
y4

Figure 7.8. comparison of analytic and numerical output responses.

174 Chapter 7

Now take the difference between the two solutions and plot the error. As
figure 7.8 shows, the differences are minimal.

figure
plot(t_num,y_lsim-y_num(t_num).','linewidth',1)
xlabel('time (s)')
ylabel('error in output response')
legend('y_1','y_2','y_3','y_4')

Using the step and initial commands with superpositionsing the and commands

with superposition Just for fun, here’s how we could use step and initial
(instead of lsim) with superposition to numerically solve.

y_step = step(sys,t_num); % forced response
y_initial = initial(sys,x0,t_num); % free response
y_total = y_initial + y_step; % (superposition)

7.7 Simulating State-Space Response LINK
PQ

For many nonlinear models, numerical solution of the state equation
is required. For linear models, we can always solve them analytically
using the methods of this chapter. However, due to its convenience, we will often
want to use numerical techniques even when analytic ones are available.
Matlab has several built-in and Control Systems Toolbox functions for analyzing

state-space system models, especially linearmodels. We’ll explore a few, here.
Consider, for instance, a linear state model with the following �, �, �, and �

matrices:

�=


−3 4 5
0 −2 3
0 −6 1

 � =


1
0
1

 � =

[
1 0 0
0 −1 0

]
� =

[
0
0

]
. (7.18)

A = [-3,4,5;0,-2,3;0,-6,1];
B = [1;0;1];
C = [1,0,0;0,-1,0];
D = [0;0];

For a step input D(C)= 3DB(C) and initial state x(0)=
[
1 2 3

]>
, let’s compare

analytic and numerical solutions for the output response y(C).
u = @(t) 3*ones(size(t)); % for t>=0
x_0 = [1; 2; 3];

https://sys.ricopic.one/pq
https://sys.ricopic.one/pq

State-Space Response 175

7.7.1 Analytic Solution

For an analytic solution, we’ll use a rearranged version of ??.8

y(C)=�Φ(C)x(0) +�Φ(C)
ˆ C

0
Φ(−�)�u(�)3�+�u(C). (7.19)

First, we need the state transition matrix Φ(C), so we consider the eigenproblem.
[M,L] = eig(A)

M =

1.0000 + 0.0000i 0.7522 + 0.0000i 0.7522 + 0.0000i
0.0000 + 0.0000i 0.3717 + 0.0810i 0.3717 - 0.0810i
0.0000 + 0.0000i 0.0787 + 0.5322i 0.0787 - 0.5322i

L =

-3.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i
0.0000 + 0.0000i -0.5000 + 3.9686i 0.0000 + 0.0000i
0.0000 + 0.0000i 0.0000 + 0.0000i -0.5000 - 3.9686i

Note that, when assigning its output to two variables M and L, the eig function
returns the modal matrix to M and the eigenvalue matrix to L. The modal matrix of
eigenvectors M has each column (eigenvector) normalized to unity. Also notice that M
and L are complex. The imaginary parts of two eigenvalues and their corresponding
eigenvectors are significant. Finally, since the real parts of the all eigenvalues are
negative, the system is stable.
The “diagonal”-basis state transition matrix Φ′(C) is simply

Φ′(C)= 4ΛC .
Let’s define this as an “anonymous” function.

Phi_p = @(t) diag(diag(exp(L*t))); % diags to get diagonal mat

The original-basis state transition matrix Φ(C) is, from ??,

Φ(C)="Φ′(C)"−1.

M_inv = M^-1; % compute just once, not on every call
Phi = @(t) M*Phi_p(t)*M_inv;

8. Although we call this the “analytic” solution, we are not solving for a detailed symbolic expression,
although we could. In fact, equation (7.19) is the analytic solution and what follows is an attempt to
represent it graphically.

176 Chapter 7

7.7.1.1 Free Response The free response is relatively straightforward to compute.

t_a = 0:.05:5; % simulation time
y_fr = NaN*ones(size(C,1),length(t_a)); % initialize
for i = 1:length(t_a)

y_fr(:,i) = C*Phi(t_a(i))*x_0;
end
y_fr(:,1:3) % first three columns

ans =

1.0000 - 0.0000i 1.8922 - 0.0000i 2.5646 - 0.0000i
-2.0000 + 0.0000i -2.2030 + 0.0000i -2.3105 + 0.0000i

A time array t_awas defined such that Phi could be evaluated. The first three
columns of yfr are printed for the first three moments in time. Note how there’s a
“hanging chad” of imaginary components. Before we realize them, let’s make sure
they’re negligibly tiny.

max(max(abs(imag(y_fr))))
y_fr = real(y_fr);

ans =

5.2907e-16

The results are plotted in figure 7.9. As we might expect from the eigenvalues,
the free responses of both outputs oscillate and decay.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−4

−2

0

2

4

time (s)

fr
ee
re
sp
o
n
se

y f
r(C

)

H1
H2

Figure 7.9. Free response yfr

State-Space Response 177

7.7.1.2 ForcedResponse Now, there is thematter of integration in equation (7.19).
Since Matlab does not excel in symbolic manipulation, we have chosen to avoid
attempting to write the solution, symbolically. For this reason, we choose a simple
numerical (trapezoidal) approximation of the integral using the trapz function.
First, the integrand can be evaluated over the simulation interval.

integrand_a = NaN*ones(size(C,2),length(t_a)); % initialize
for i = 1:length(t_a)

tau = t_a(i);
integrand_a(:,i) = Phi(-tau)*B*u(tau);

end

Now, numerically integrate.

integral_a = zeros(size(integrand_a));
for i = 2:length(t_a)

i_up = i; % upper limit of integration
integral_a(:,i) = ... % transposes for trapz

trapz(t_a(1:i_up)',integrand_a(:,1:i_up)')';
end

Now, evaluate the forced response at each time.

y_fo = NaN*ones(size(C,1),length(t_a)); % initialize
for i = 1:length(t_a)

y_fo(:,i) = C*Phi(t_a(i))*integral_a(:,i);
end
y_fo(:,1:3) % first three columns

ans =

0.0000 + 0.0000i 0.1583 - 0.0000i 0.3342 - 0.0000i
0.0000 + 0.0000i -0.0109 + 0.0000i -0.0426 + 0.0000i

max(max(abs(imag(y_fo))))
y_fo = real(y_fo);

ans =

2.1409e-16

The forced response is shown in figure 7.10, which shows damped oscillations.

178 Chapter 7

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−1

0

1

2

3

time (s)

fo
rc
ed

re
sp
o
n
se

y f
o
(C
) H1

H2

Figure 7.10. Forced response yfo

7.7.1.3 Total Response The total response is found from the sum of the free and
forced responses: y(C)= yfr + yfo. We can simply sum the arrays.

y_t = y_fr + y_fo;

The result is plotted in figure 7.11.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

−2

0

2

4

time (s)

to
ta
l
re
sp
o
n
se

y
(C
)

H1
H2

Figure 7.11. Total response y

State-Space Response 179

7.7.2 Numerical Solution

The numerical solution of the state equations is rather simple using Matlab’s ss and
step or lsim commands, as we show, here. First, we define an ssmodel object—a
special kind of object that encodes a state-space model.

sys = ss(A,B,C,D);

At this point, using the step function would be the easiest way to solve for
the step response. However, we choose the more-general lsim for demonstration
purposes.

y_t_num = lsim(sys,u(t_a),t_a,x_0);

This total solution is shown in figure 7.12.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

−2

0

2

4

time (s)

to
ta
l
re
sp
o
n
se
(n
u
m
er
ic
al
)
y
(C
)

H1
H2

Figure 7.12. Total response y from lsim

d_y = y_t-y_t_num';

Figure 7.13 shows a plot of the differences between the analytic total solution y_t
and the numerical y_t_num for each output. Note that calling this “error” is a bit
presumptuous, given that we used numerical integration in the analytic solution. If
a more accurate method is desired, working out the solution, symbolically, is the
best.

180 Chapter 7

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

−4

−2

0

2

4
·10−3

time (s)

to
ta
l
re
sp
o
n
se
er
ro
r

H1
H2

Figure 7.13. Total response error y_t-y_t_num

State-Space Response 181

7.8 Problems LINK
AZ

Problem 7.1 LINKLARRY Let a system have the following state and output equation
matrices:

�=

[
−3 0
1 −2

]
�=

[
0
1

]
� =

[
0 1

]
� =

[
0
]
.

For this system, answer the following imperatives.

1. Find the eigenvalue matrix Λ and comment on the stability of the sys-
tem (justify your comment). Use the convention that �1 ≥ �2 and order Λ
accordingly.

2. Find the eigenvectors and the modal matrix ".
3. Find the state transition matrix Φ(C). Hint: first find the “diagonalized” state

transition matrix Φ′(C).
4. Using the state transition matrix, find the output free response for initial

condition

x(0)=
[
1
0

]
.

Problem 7.2 LINKMO Let a system have the following state and output equation
matrices:

�=

[
−1 1
0 −2

]
�=

[
1
0

]
� =

[
1 0

]
� =

[
0
]
.

For this system, answer the following imperatives.

1. Find the eigenvalue matrix Λ and comment on the stability of the sys-
tem (justify your comment). Use the convention that �1 ≤ �2 and order Λ
accordingly.

2. Find the eigenvectors and the modal matrix ".
3. Find the state transition matrix Φ(C). Hint: first find the “diagonalized” state

transition matrix Φ′(C).
4. Using the state transition matrix, find the output homogeneous solution for

initial condition

x(0)=
[
0
1

]
.

https://sys.ricopic.one/az
https://sys.ricopic.one/az
https://sys.ricopic.one/larry
https://sys.ricopic.one/mo

182 Chapter 7

Problem 7.3 LINKCURLY Use a computer for this exercise. Let a system have the
following state �-matrix:

�=


−2 2 0
−1 −2 2
0 −1 −2

 .
For this system, answer the following imperatives.

1. Find the eigenvalue matrix Λ and modal matrix ".
2. Comment on the stability of the system (justify your comment).
3. Find the diagonalized state transition matrix Φ′(C). Be sure to print the

expression. Furthermore, find the state transition matrix Φ(C).
4. Using the state transitionmatrix, find the state free response for initial condition

x(0)=

0
0
1

 .
Do not print this expression.

5. Plot the free response found above for C ∈ [0, 4] seconds.

Problem 7.4 LINKLONELY Use a computer for this exercise. Let a system have the
following state and output equation matrices:

�=


−1 0 8
0 −2 0
0 0 −3

 �=


0 2
3 0
0 0

 � =
[
1 0 −1

]
� =

[
0 0

]
.

For this system, answer the following imperatives.

1. Find the eigenvalue matrix Λ and comment on the stability of the system
(justify your comment). Use the convention that �1 ≥ �2 ≥ �3 and order Λ
accordingly.

2. Find the eigenvectors and the modal matrix ".
3. Find the state transition matrix Φ(C). Hint: first find the “diagonalized” state

transition matrix Φ′(C).
4. Let the input be

u(C)=
[

4
sin(2�C)

]
.

Solve for the forced state response xfo(C). Express it simply—it’s not that bad.
5. Solve for the forced output response yfo(C). Express it simply—it’s not that

bad.
6. Plot yfo(C) for C ∈ [0, 7] sec.

https://sys.ricopic.one/curly
https://sys.ricopic.one/lonely

State-Space Response 183

Problem 7.5 LINKARTEMIS Use a computer for this exercise. Let a system have the
following state and output equation matrices:

�=

[
−5 6
1 −10

]
, �=

[
2
0

]
, � =

[
0 1

]
, � =

[
0
]
.

For this system, answer the following imperatives.

1. Find the eigenvalue matrix Λ and comment on the stability of the sys-
tem (justify your comment). Use the convention that �1 ≥ �2 and order Λ
accordingly.

2. Find the eigenvectors and the modal matrix ".
3. Find the state transition matrix Φ(C). Hint: first find the “diagonalized” state

transition matrix Φ′(C).
4. Let the input be

u(C)=
[
�(C)

]
,

where � is the Dirac delta impulse function.9 Solve for the forced state

response xfo(C). Express it simply.10
5. Solve for the forced output response yfo(C). Express it simply.
6. Plot yfo(C) for C ∈ [0, 3] sec.

Problem 7.6 LINKLEVEL Use a computer for this exercise. Let a system have the
following state and output equation matrices:

�=


−4 −3 0
0 −8 4
0 0 −1

 , �=


0
1
0

 , � =
[
0 1 0

]
, � =

[
0
]
.

For this system, answer the following imperatives.

1. Find the eigenvalue matrix Λ and comment on the stability of the system
(justify your comment).

2. Find the eigenvectors and the modal matrix ".
3. Find the state transition matrix Φ(C). Hint: first find the “diagonalized” state

transition matrix Φ′(C).
4. Let the input be

u(C)=
[
DB(C)

]
,

where DB is the unit step function.11 Solve for the forced state response xfo(C).
Express it simply.

9. In Python, we can define a symbolic unit step function using the sympy.Heaviside() function.
Alternatively, we can set DB (C) equal to 1 for integration over the interval [0, C].
10. Matlab’s simplify function may need some help. Use the ‘assume’ function.
11. In Python, we can define a symbolic unit step function using the sympy.Heaviside() function.
Alternatively, we can set DB (C) equal to 1 for integration over the interval [0, C].

https://sys.ricopic.one/artemis
https://sys.ricopic.one/level

184 Chapter 7

5. Solve for the forced output response yfo(C). Express it simply.
6. Plot yfo(C) for C ∈ [0, 5] sec.

8 Lumped-Parameter Modeling Fluid and Thermal
Systems

LINK
Z4

We now consider the lumped-parameter modeling of fluid systems and thermal

systems. The linear graph-based, state-space modeling techniques of ?????? are
called back up to service for this purpose. Recall that this method defines several
types of discrete elements in an energy domain—in ????, the electrical and mechan-
ical energy domains. Also recall from ?? that energy transducing elements allow
energy to flow among domains. In this chapter, we introduce fluid and thermal
energy domains and discrete and transducing elements associated therewith.
The analogs between the mechanical and electrical systems from ?? are expanded

to include fluid and thermal systems. This generalization allows us to include, in
addition to electromechanical systems, inter-domain systems including electrical,
mechanical, fluid, and thermal systems.
This chapter begins by defining discrete lumped-parameter elements for fluid

and thermal systems. We then categorize these into energy source, energy storage
(A-type and T-type), and energy dissapative (D-type) elements, allowing us to
immediately construct linear graphs and normal trees in the manner of ??. Then
we can directly apply the methods of ?? to construct state-space models of systems
that include fluid and thermal elements.

https://sys.ricopic.one/z4
https://sys.ricopic.one/z4

186 Chapter 8

8.1 Fluid System Elements LINK
TS

Detailed distributedmodels of fluids, such as the Navier-Stokes equa-
tions, are necessary for understanding many aspects of fluid systems
and for guiding their design (e.g. a pump or an underwater vehicle). However, a
great many fluid systems are networks of pipes, tanks, pumps, valves, orifices, and
elevation changes—and at this system-level, a different approach is required.
As with electrical and mechanical systems, we can describe fluid systems as

consisting of discrete lumped-parameter elements. The dynamic models that can be
developed from considering these elements are often precisely the right granularity
for system-level design.
We now introduce a few lumped-parameter elements for modeling fluid systems.

Let a volumetric flowrate & and pressure drop % be input to a port in a fluid
element. Since, for fluid systems, the power into the element is

P(C)=&(C)%(C)
we call& and % the power-flow variables for fluid systems. A fluid element has two
distinct locations between which its pressure drop is defined. We call a reference
pressure ground.
Work done on the system over the time interval [0,)] is defined as

, ≡
ˆ)

0
P(�)3�.

Therefore, the work done on a fluid system is

, =

ˆ)

0
&(�)%(�)3�.

The pressure momentum Γ is

Γ(C)=
ˆ C

0
%(�)3�+Γ(0).

Similarly, the volume is

+(C)=
ˆ C

0
&(�)3�++(0).

We now consider two elements that can store energy, called energy storage

elements; an element that can dissipate energy to a system’s environment, called an
energy dissipative element; and two elements that can supply power from outside
a system, called source elements.

https://sys.ricopic.one/ts
https://sys.ricopic.one/ts

Lumped-Parameter Modeling Fluid and Thermal Systems 187

8.1.1 Fluid Inertances

When fluid flows through a pipe, it has a momentum associated with it. The more
mass (fluid density by its volume) moving in one direction and the faster it moves,
the more momentum. This is stored kinetic energy. The discrete element we now
introduce models this aspect of fluid systems.
A fluid inertance is defined as an element for which the pressure momentum Γ

across it is a monotonic function of the volumetric flowrate & through it. A linear

inertance is such that
Γ(C)= �&(C),

where � is called the inertance and is typically a function of pipe geometry and fluid
properties. This is called the element’s constitutive equation because it constitutes
what it means to be an inertance.
Although there are nonlinear inertances, we can often use a linear model for

analysis in some operating regime. The elemental equation for a linear inertance
can be found by time-differentiating section 8.1.1 to obtain

3&

3C
=

1
�
%.

We call this the elemental equation because it relates the element’s power-flow
variables & and %.
An inertance stores energy as kinetic energy, making it an energy storage element.

The amount of energy it stores depends on the volumetric flowrate it contains. For
a linear inertance,

ℰ(C)= 1
2
�&(C)2.

Figure 8.1. A section of pipe for deriving its inertance.

The inertance � for a uniform pipe can be derived, as follows, with reference to
the sectioned pipe of figure 8.1. For an incompressible fluid flowing through a pipe
of uniform area � and length !, with uniform velocity profile (a convenient fiction),
an element of fluid obey’s Newton’s second law, from which several interesting

188 Chapter 8

equalities can be derived:

� =<
3E

3C
⇒

�

�
=
<

�

3E

3C
⇒

% =
��!

�

3E

3C

= �!
3

3C

(
&

�

)
=
�!

�

3&

3C
⇒

3&

3C
=

�

�!︸︷︷︸
1/�

%.

From this last equality, it is clear that, for a uniform pipe and the assumptions,
above,

� =
�!

�
.

Clearly, long, thin pipes will have more inertance. In fact, we often ignore inertance
in modeling a pipe, unless it is relatively long and thin.

8.1.2 Fluid Capacitors

When fluid is stored in tanks or in pressure vessels, it stores potential energy via its
pressure drop %. For instance, a tank with a column of fluid will have a pressure
drop associatedwith the height of the column. This is analogous to how an electronic
capacitor stores its energy via its voltage. For this reason, we call such fluid elements
fluid capacitors.
A linear fluid capacitor with capacitance �, pressure drop %, and volume + has

the constitutive equation
+ =�%.

Once again, time-differentiating the constitutive equation gives us the elemental
equation:

3%

3C
=

1
�
&,

Fluid capacitors can store energy (making them energy storage elements) in fluid
potential energy, which, for a linear capacitor is

ℰ(C)= 1
2
�%2.

Lumped-Parameter Modeling Fluid and Thermal Systems 189

8.1.3 Fluid Resistors

Fluid resistors are defined as elements for which the volumetric flowrate& through
the element is a monotonic function of the pressure drop % across it. Linear fluid
resistors have constitutive equation (and, it turns out, elemental equation)

& =
1
'
%

where ' is called the fluid resistance.
Fluid resistors dissipate energy from the system (to heat), making them energy

dissipative elements.

8.1.4 Flowrate and Pressure Drop Sources

Fluid sources include pumps, runoff, etc.
An ideal volumetric flowrate source is an element that provides arbitrary

energy to a system via an independent (of the system) volumetric flowrate. The
corresponding pressure drop across the element depends on the system.
An ideal pressure drop source is an element that provides arbitrary energy to

a system via an independent (of the system) pressure drop. The corresponding
volumetric flowrate through the element depends on the system.
Real sources, usually pumps, cannot be ideal sources, but in some instances can

approximate them. More typical is to include a fluid resistor in tandem with an
ideal source, as we did with electrical resistors for real electrical sources.

8.1.5 Generalized Element and Variable Types

In keeping with the definitions of ??, pressure % is an across-variable and flowrate
& is a through-variable.
Consequently, the fluid capacitor is considered anA-type energy storage element.

Similarly, the fluid inertance is a T-type energy storage element. Clearly, a fluid
resistor is a D-type energy dissipative element.
Pressure sources are, then, across-variable sources and volumetric flowrate

sources are through-variable sources.

Example 8.1

Use the schematic in figure 8.2 to draw a linear graph of the system.

190 Chapter 8

CC

R2

Qs

R1,

1

I
1 2

Figure 8.2. Schematic of a fluid system for example 8.1.

Figure 8.3. image

8.2 Thermal System Elements LINK
YD

Systems in which heat flow is of interest are called thermal systems.
For instance, heat generated by an engine or a server farm flows
through several bodies via the three modes of heat transfer: conduction, convection,
and radiation. This is, of course, a dynamic process.
A detailed model would require a spatial continuum. However, we are often

concerned with, say, the maximum temperature an engine will reach for different
speeds or the maximum density of a server farm while avoiding overheating. Or,
more precisely, how a given heat generation affects the temperature response of
system components.
Aswith electrical, mechanical, and fluid systems,we can describe thermal systems

as consisting of discrete lumped-parameter elements. The dynamic models that
can be developed from considering these elements are often precisely the right
granularity for system-level design.
We now introduce a few lumped-parameter elements for modeling thermal

systems. Let a heat flow rate @ (SI units W) and temperature) (SI units K or C) be

https://sys.ricopic.one/yd
https://sys.ricopic.one/yd

Lumped-Parameter Modeling Fluid and Thermal Systems 191

input to a port in a thermal element. There are three structural differences between
thermal systems and the other types we’ve considered. We are confronted with the
first, here, when we consider that heat power is typically not considered to be the
product of two variables; rather, the heat flow rate @ is already power:

P(C)= @(C).
A thermal element has two distinct locations between which its temperature drop
is defined. We call a reference temperature ground.
The heat energy � of a system with initial heat �(0) is

�(C)=
ˆ C

0
P(�)3�+�(0).

We now consider an element that can store energy, called an energy storage

element; an element that resists power flow; and two elements that can supply
power from outside a system, called source elements. The second difference is that
there is only one type of energy storage element in the thermal domain.

8.2.1 Thermal Capacitors

When heat is stored in an object, it stores potential energy via its temperature).
This is analogous to how an electronic capacitor stores its energy via its voltage. For
this reason, we call such thermal elements thermal capacitors.
A linear thermal capacitor with thermal capacitance � (SI units J/K), temperature

), and heat � has the constitutive equation

� =�).

Once again, time-differentiating the constitutive equation gives us the elemental
equation:

3)

3C
=

1
�
@,

The thermal capacitance � is an extensive property—that is, it depends on the
amount of its substance. This is opposed to the specific heat capacity 2 (units
J/K/kg), an intensive property: one that is independent of the amount of its
substance. These quantities are related for an object of mass < by the equation

� =<2.

192 Chapter 8

8.2.2 Thermal Resistors

Thermal resistors are defined as elements for which the heat flowrate @ through
the element is a monotonic function of the temperature drop) across it. Linear
thermal resistors have constitutive equation (and, it turns out, elemental equation)

@ =
1
'
)

where ' is called the thermal resistance.
Thermal resistors do not dissipate energy from the system, which is the third

difference between thermal and other energy domains we’ve considered. After all,
the other “resistive” elements all dissipate energy to heat. Rather than dissipate
energy, they simply impede its flow.
All three modes of heat transfer are modeled by thermal resistors, but only two

of them are well-approximated as linear for a significant range of temperature.

conduction Heat conduction is the transfer of heat through an object’s microscopic
particle interaction.1 It is characterized by a thermal resistance

'=
!

��
,

where ! is the length of the object in the direction of heat transfer, � is the
transverse cross-sectional area, and � is the material’s thermal conductivity

(SI units W/K/m).2

convection Heat convection is the transfer of heat via fluid advection: the bulk
motion of a fluid. It is characterized by a thermal resistance

'=
1
ℎ�

,

where ℎ is the convection heat transfer coefficient (SI units W/m2/K) and �
is the area of fluid-object contact (SI units m2). The convection heat transfer
coefficient ℎ is highly and nonlinearly dependent on the velocity of the fluid.
Furthermore, the geometry of the objects and the fluid composition affect ℎ.

radiation Radiative heat transfer is electromagnetic radiation emitted from one
body and absorbed by another. For)1 the absolute temperature of a “hot”
body,)2 the absolute temperature of a “cold” body, � the effective emissiv-

ity/absorptivity,3 and � the area of the exposed surfaces, the heat transfer is

1.We use the term “object” loosely, here, to mean a grouping of continuous matter in any phase.

2. Thermal resistance can also be defined as an intensive property �−1, the reciprocal of the thermal
conductivity. Due to our lumped-parameter perspective, we choose the extensive definition.

3. The parameter � is taken to be the combined “gray body” emissivity/absorptivity. Consult a heat
transfer text for details.

Lumped-Parameter Modeling Fluid and Thermal Systems 193

characterized by
@ = ���()4

1 −)4
2),

where � is the Stefan-Boltzmann constant

�= 5.67 · 10−8 W

m2 4
.

Clearly, this heat transfer is highly nonlinear. Linearization of this heat transfer
is problematic because the temperature difference) between the bodies does
not appear in the expression. For many system models, radiative heat transfer
is assumed negligible. We must be cautious with this assumption, however,
especially when high operating temperatures are anticipated.

8.2.3 Heat Flow Rate and Temperature Sources

Thermal sources include many physical processes—almost everything generates
heat!
An ideal heat flow rate source is an element that provides arbitrary heat flow

rate &B to a system, independent of the temperature across it, which depends on
the system.
An ideal temperature source is an element that provides arbitrary temperature

)B to a system, independent of the heat flow rate through it, which depends on the
system.

8.2.4 Generalized Element and Variable Types

In keeping with the definitions of ??, temperature) is an across-variable and heat
flow rate @ is a through-variable.
Consequently, the thermal capacitor is considered an A-type energy storage

element. A thermal resistor is considered to be aD-type energy dissipative element,
although it does not actually dissipate energy. It does, however, resist its flow and
relates its across- and through-variables algebraically, both signature characteristics
of D-type elements.
Temperature sources are, then, across-variable sources and heat flow rate sources

are through-variable sources.

Example 8.2

Careless Carlton left a large pot of water boiling on the stove. Worse, a cast-iron
pan is bumped so that it is in solid contact with the pot and his glass fish tank,
which was carelessly left next to the stove, as shown in figure 8.4. Draw a linear
graph of the sad situation to determine what considerations determine if Careless
Carlton’s fish goes from winner to dinner.

194 Chapter 8

Figure 8.4. Careless Carlton’s fish’s sad situation.

Dummy dymmu dymmu dymmu dymmu dymmu dymmu dymmu dymmu
dymmu dymmu dymmu dymmu dymmu dymmu dymmu dymmu dymmu
dymmu dymmu dymmu dymmu dymmu dymmu dymmu dymmu dymmu
dymmu dymmu dymmu dymmu dymmu dymmu dymmu dymmu dymmu
dymmu dymmu dymmu dymmu dymmu dymmu dymmu dymmu dymmu
dymmu dymmu dymmu dymmu dymmu dymmu dymmu dymmu dymmu
dymmu dymmu dymmu dymmu dymmu dymmu dymmu dymmu dymmu
dymmu dymmu.

8.3 Fluid Transducers LINK
O8

Although thermal systems often exchange energy with other energy
domains, it is much more common to consider those systems that
interact with thermal systems to be generating or sinking heat (often modeled as a
dependent source) than to see a proper transducer.
Fluid systems, on the other hand, very naturally interact with mechanical sys-

tems. For instance, piston-cylinder mechanisms, propellers, turbines, and impellers
(backward turbines) are just a few energy transducing elements.
These systems are often driven by motors (e.g. a pump’s impeller) or drive

generators (e.g. a dam’s turbine). Therefore, it is common to require a fluid-
electromechanical dynamic model.

Example 8.3

Dams, even small, “micro” dams, generate hydroelectric power by directing
water through turbines, which rotate, creating mechanical power, and drive
electric generators, generating electric power. For large-scale dams, the flowrate
is regulated such that an AC generator produces a nice 60 Hz. However, a
microhydroelectric generator typically cannot expect well-regulated flowrates,
so sometimes they use a brushed DC generator (brush replacement being the

https://sys.ricopic.one/o8
https://sys.ricopic.one/o8

Lumped-Parameter Modeling Fluid and Thermal Systems 195

primary drawback). Assuming a microhydroelectric dam can be set up in a man-
ner similar to a large-scale dam, draw a linear graph model from the schematic
of figure 8.5.

Intake

Penstock

Generator

Turbine
River

Long Distance
Power LinesPowerhouse

Hydroelectric Dam

Reservoir

Figure 8.5. Schematic of a hydroelectric dam.

A linear graph is shown below:

&B

�1

'1 !1
%B1

1

%B2
'2

�2

2 � � 3 4

'3 !2

�3 '4

196 Chapter 8

8.4 State-Space Model of a Hydroelectric Dam LINK
I8

Consider the microhydroelectric dam of example 8.1. We derived the
linear graph of ??. In this lecture, we will derive a state-space model
for the system—specifically, a state equation.

&B

�1

'1 !1
%B1

1

%B2
'2

�2

2 � � 3 4

'3 !2

�3 '4

Figure 8.6. A linear graph for a microhydroelectric dam.

8.4.1 Normal Tree, Order, and Variables

Now, we define a normal tree by overlaying it on the system graph in ??. There
are six independent energy storage elements, making it a sixth-order (= = 6) system.
We define the state vector to be

x =
[
%�1 %�2 &!1 Ω� 8!2 E�3

]>
.

The input vector is defined as u =
[
&B %B1 %B2

]>
.

8.4.2 Elemental Equations

Yet to be encountered is a turbine’s transduction. A simple model is that the torque
)2 is proportional to the flowrate &1, which are both through-variables, making it a
transformer, so

)2 =−
&1 0=3 Ω2 =
1

%1 ,

where
 is the transformer ratio.
The other elemental equations have been previously encountered and are listed,

below.

https://sys.ricopic.one/i8
https://sys.ricopic.one/i8

Lumped-Parameter Modeling Fluid and Thermal Systems 197

el. elemental eq.

�1
3%�1

3C
=

1
�1
&�1

�2
3%�2

3C
=

1
�2
&�2

!1
3&!1

3C
=

1
!1
%!1

�
3Ω�

3C
=

1
�
)�

!2
38!2

3C
=

1
!2
E!2

el. elemental eq.

�3
3E�3

3C
=

1
�3
8�3

'1 %'1 =&'1'1

'2 %'2 =&'2'2

1)2 =−
&1

2 Ω2 =
1

%1

el. elemental eq.

� Ω� =
1
�
)�

3 84 =
−1
:<
)3

4 E4 = :<Ω3

'3 E'3 = 8'3'3

'4 8'4 =
1
'4
E'4

8.4.3 Continuity and Compatibility Equations

Continuity and compatibility equations can be found in the usual way—by drawing
contours and temporarily creating loops by including links in the normal tree. We
proceed by drawing a table of all elements and writing a continuity equation for
each branch of the normal tree and a compatibility equation for each link.

198 Chapter 8

el. eq.

�1 &�1 =&B −&!1

�2 &�2 =&!1

!1 %!1 =−%'1 +%�1 −%�2+

−%'2 +%B2 −%1 +%B1
�)� =−)2 −)� −)3

!2 E!2 =−E'3 + E4 − E�3

el. eq.

�3 8�3 = 8!2 − 8'4

'1 &'1 =&!1

'2 &'2 =&!1

1 &1 =&!1

2 Ω2 =Ω�

el. eq.

� Ω� =Ω�

3 Ω3 =Ω�

4 84 =−8!2

'3 8'3 = 8!2

'4 E'4 = E�3

8.4.4 State Equation

The system of equations composed of the elemental, continuity, and compatibility
equations can be reduced to the state equation. There is a substantial amount
of algebra required to eliminate those variables that are neither state nor input
variables. Therefore, we use the Mathematica package StateMint (Picone2018). The
resulting system model is:

3x
3C

=�x + �u ,

�=



0 0 −1/�1 0 0 0
0 0 1/�2 0 0 0

1/!1 −1/!1 −('1 +'2)/!1 −
/!1 0 0
0 0
/� −�/� −:</� 0
0 0 0 :</!2 −'3/!2 −1/!2

0 0 0 0 1/�3 −1/('4�3)


,

�=



1/�1 0 0
0 0 0
0 1/!1 1/!1

0 0 0
0 0 0
0 0 0


.

The rub is estimating all these parameters.

8.5 Thermal Finite Element Model

Lumped-Parameter Modeling Fluid and Thermal Systems 199

Example 8.4 LINK
5D

Consider the long homogeneous copper bar of the figure below,
insulated around its circumference, and initially at uniform tem-
perature. At time C = 0, the temperature at one end of the bar (G = 0) is increased
by one Kelvin. We wish to find the dynamic variation of the temperature at any
location x along the bar, at any time C > 0.

G

!

)(insulation

Construct a discrete element model of thermal conduction in the bar, for which
the following parameters are given for its length L and diameter d.
L = 1; % m
d = 0.01; % m

Geometrical Considerations The cross-sectional area for the bar is as follows.

a = pi/4*d^2; % m^2 x-sectional area

Dividing the bar into n sections (“finite elements”) such that we have length
of each dx gives the following.

n = 100; % number of chunks
dx = L/n; % m ... length of chunk

Material Considerations The following are the material properties of copper.

cp = 390; % SI ... specific heat capacity
rho = 8920; % SI ... density
ks = 401; % SI ... thermal conductivity

Lumping From the geometrical and material considerations above, we can
develop a lumped thermal resistance R and thermal capacitance c of each cylin-
drical section of the bar of length dx. From section 8.2.2 and section 8.2.1, these
parameters are as follows.

R = dx/(ks*a); % thermal resistance
dV = dx*a; % m^3 ... section volume
dm = rho*dV; % kg ... section mass
c = dm*cp; % section volume

Linear Graph Model The linear graph model is shown in figure 8.7 with the
corresponding normal tree overlayed.

https://sys.ricopic.one/5d
https://sys.ricopic.one/5d

200 Chapter 8

Figure 8.7. a linear graph of the insulated bar.

State-Space Model The state variables are clearly the temperatures of �8 :
)�1 , · · · ,)�= . Therefore, the order of the system is =.
The state, input, and output variables are

x =
[
)�1 · · ·)�=

]>
, u =

[
)(

]
, and y= x.

Elemental, Continuity, and Compatibility Equations Consider the elemental, con-
tinuity, and compatibility equations, below, for the first, a middle, and the last
elements. The following makes the assumption of homogeneity, which yields
'8 =' and �8 =�.

element elemental eq. continuity eq. compatibility eq.

�1 ¤)�1 =
1
� @�1 @�1 = @'1 − @'2

'1 @'1 =
1
')'1)'1 =)(−)�1

�8 ¤)�8 = 1
� @�8 @�8 = @'8 − @'8+1

'8 @'8 =
1
')'8)'8 =)�8−1 −)�8

�= ¤)�= = 1
� @�= @�= = @'=

'= @'= =
1
')'=)'= =)�=−1 −)�=

Deriving the state equations for sections 1, 8, and =eriving the state equations for sections
, , and For each of the first, a representative middle, and the last elements, we

Lumped-Parameter Modeling Fluid and Thermal Systems 201

can derive the state equation with relatively few substitutions, as follows.

¤)�1 =
1
�
@�1 (elemental)

=
1
�
(@'1 − @'2) (continuity)

=
1
'�

()'1 −)'2) (elemental)

=
1
'�

()(−)�1 −)�1 +)�2) (compatibility)

=
1
'�

()(− 2)�1 +)�2). (8.1)

¤)�8 =
1
�
@�8 (elemental)

=
1
�
(@'8 − @'8+1) (continuity)

=
1
'�

()'8 −)'8+1) (elemental)

=
1
'�

()�8−1 − 2)�8 +)�8+1). (compatibility)

¤)�= =
1
�
@�= (elemental)

=
1
�
@'= (continuity)

=
1
'�

)'= (elemental)

=
1
'�

()�=−1 −)�=). (compatibility)

202 Chapter 8

Let �='�. The � and � matrices are, then

�=



−2/� 1/� 0 · · · 0 0 0 · · · 0 0 0
1/� −2/� 1/� · · · 0 0 0 · · · 0 0 0

. . .
. . .

. . .
... 1/� −2/� 1/�

...
. . .

. . .
. . .

0 0 0 · · · 0 0 0 · · · 1/� −2/� 1/�
0 0 0 · · · 0 0 0 · · · 0 1/� −1/�


�=


1/�

0
...

0

=×1

.

The outputs are the states: y= x. Or, in standard form with identity matrix �,
the matrices are:

� = �=×= and � = 0=×1.

Simulation of a Step Response Define the Amatrix.

A = zeros(n);
% first row
A(1,1) = -2/(R*c);
A(1,2) = 1/(R*c);
% last row
A(n,n-1) = 1/(R*c);
A(n,n) = -1/(R*c);
% middle rows
for i = 2:(n-1)
A(i,i-1) = 1/(R*c);
A(i,i) = -2/(R*c);
A(i,i+1) = 1/(R*c);

end

Now define B, C, and D.
B = zeros([n,1]);
B(1) = 1/(R*c);
C = eye(n);
D = zeros([n,1]);

Create a state-space model.

sys = ss(A,B,C,D);

Lumped-Parameter Modeling Fluid and Thermal Systems 203

Simulate a unit step in the input temperature.

Tmax = 1200; % sec ... final sim time
t = linspace(0,Tmax,100);
y = step(sys,t);

Plot the Step Response To prepare for creating a 3D plot, we need to make a grid
of points.

x = dx/2:dx:(L-dx/2);
[X,T] = meshgrid(x,t);

Now we’re ready to plot. The result is shown in figure 8.8.

figure
contourf(X,T,y)
shading(gca,'interp')
xlabel('x')
ylabel('time')
zlabel('temp (K)')

0.2 0.4 0.6 0.8
0

200

400

600

800

1,000

x (m)

tim
e
(s
)

0

0.2

0.4

0.6

0.8

te
m
p
e
ra

tu
re

fr
o
m

re
fe
re
n
ce

Figure 8.8. Spatiotemporal thermal response.

204 Chapter 8

8.6 Problems LINK
HS

Problem 8.1 LINKTINKER Draw a linear graph of the fluid system with schematic
below.

C
C

Qs

R1,

1

I
1

2

2

R2

Problem 8.2 LINKTAILOR Draw a linear graph of the fluid system with schematic
below.

CC
R1,

1

I
1 2

QS1
QS2

2

R2

Problem 8.3 LINKSOLDIER (a) Draw a linear graph of the fluid system with schematic
below. (b) Draw a normal tree and identify the state variables and system order.

CC
R2,

1

I

1

R1
1 2

QS1

PS

R3Lorem ipsum

Problem 8.4 LINKTPAIN Consider an apparatus with two chambers filled with gas at
potentially different temperatures illustrated in figure 8.9. Temperature sensors are
embedded in the two “sensor blocks,” made of copper for low thermal resistance
and made large enough to provide enough thermal capacitance to smooth out
temperature fluctuations.4 The “structural conduit” is made of steel, less thermally

4. It would be reasonable to subdivide each chamber into several small “finite elements,” but then there’s
the question of how to model the gas motion (which takes us beyond a thermal model). Another option

https://sys.ricopic.one/hs
https://sys.ricopic.one/hs
https://sys.ricopic.one/tinker
https://sys.ricopic.one/tailor
https://sys.ricopic.one/soldier
https://sys.ricopic.one/tpain

Lumped-Parameter Modeling Fluid and Thermal Systems 205

conductive, but conductive nonetheless. The conduit provides structure to the
apparatus and is hollow to allow the sensor wires to run through.

Chamber 1 Chamber 2

insulationstructural conduit

sensor block (2)

Figure 8.9. A diagram of the two-chamber apparatus.

A concern with this apparatus is that the temperature in one chamber will affect
the temperature in the other, most conspicuously by heat conducting through the
structural conduit.
We will begin an analysis of the thermal isolation of the two chambers and

temperature measurements. Develop a thermal lumped-parameter model as
follows.

1. Describe the lumped-parameter elements you will use to model the system.
2. Draw a linear graph of the lumped-parameter model.
3. Superimpose a normal tree on the graph, identify the system order, and

choose the state variables.

Problem 8.5 LINKDRAMP Consider a device with four amplifiers in an array on a
printed circuit board (PCB), as illustrated in figure 8.10. The amplifiers generate
significant heat (as a byproduct), and they must be cooled. For this reason, each
amplifier has mounted on top a heat sink device with fins. A fan forces airflow over
the fins to dissipate the heat via convection.

is to assume the temperature of the chamber and the block are identical. This is reasonable, but probably
misses some of the important dynamics going on.

https://sys.ricopic.one/dramp

206 Chapter 8

amp. w/heat sink (4)

fan vent

PCB

Figure 8.10. Top view of four amplifiers in a chassis.

As the designer of the chassis housing the amplifiers, you would like to develop
a lumped-parameter thermal model of the system to ensure that, under different
heat generation loads, the amplifiers remain within their acceptable temperature
range.

1. Describe the lumped-parameter elements you will use to model the system,
including inputs.

2. Draw a linear graph of the lumped-parameter model.
3. Superimpose a normal tree on the graph, identify the system order, and

choose the state variables.

Problem 8.6 LINKUP Consider the diagram of the first stages of a drinking water
treatment plant shown in figure 8.11. The water to be treated comes from a reservoir
and is pumped by Pump 1 into the coagulation tank. The suspended particles
are too small to settle via gravity, and their generally negative charges repel each
other, keeping them from clumping. Here a small amount of a chemical coagulant
with positive charge is rapidly mixed in with paddles. Coagulation is the resultant
clumping of the particles.

https://sys.ricopic.one/up

Lumped-Parameter Modeling Fluid and Thermal Systems 207

Pump 1
Reservoir

Coagulation
tank

Flocculation
tanks

Sedimentation
tank

Pump 2

Filtration

Figure 8.11. A water treatment plant.

The water with coagulated particles flows through a long, thin pipe and enters
a series of 3 flocculation tanks. In the flocculation tanks, which mix at decreasing
rates as the fluid progresses, the coagulated particles join into increasingly larger
pieces called flocs. Note that the placement of the inlet and outlet of each tank has a
sorting effect.
After the third tank, the water flows through a short, wide pipe into the sedi-

mentation tank. Now the flocs are large enough to settle via gravity, and Pump 2
on the outlet pumps the water sans flocs to filtration and disinfection stages of the
purification process.
The quality of the process is highly dependent on the volumetric flow rates and

pressures in the tanks. Develop a lumped-parameter linear graph model with the
following steps:

1. Describe the lumped-parameter elements you will use to model the system,
including inputs.

2. Draw a linear graph of the lumped-parameter model.
3. Superimpose a normal tree on the graph, identify the system order, and

choose the state variables.

9 Fourier Series and Transforms LINK
1C

In this chapter, we introduce the Fourier series and the Fourier transform.

9.1 Fourier Series LINK
P8

Fourier series are mathematical series that can represent a periodic
signal as a sum of sinusoids at different amplitudes and frequencies.
They are useful for solving for the response of a system to periodic inputs. However,
they are probably most important conceptually: they are our gateway to thinking
of signals in the frequency domain—that is, as functions of frequency (not time).
To represent a function as a Fourier series is to analyze it as a sum of sinusoids
at different frequencies1 $= and amplitudes 0= . Its frequency spectrum is the
functional representation of amplitudes 0= versus frequency $= .
Let’s begin with the definition.

Definition 9.1

The Fourier analysis of a periodic function H(C) is, for = ∈N (positive), period),
and angular frequency $= = 2�=/),

00 =
2
)

ˆ
)

H(C)3C

0= =
2
)

ˆ
)

H(C) cos($=C)3C

1= =
2
)

ˆ
)

H(C) sin($=C)3C.

1. It’s important to note that the symbol $= , in this context, is not the natural frequency, but a frequency
indexed by integer =.

https://sys.ricopic.one/1c
https://sys.ricopic.one/1c
https://sys.ricopic.one/p8
https://sys.ricopic.one/p8

210 Chapter 9

The Fourier synthesis of a periodic function H(C)with analysis components 0= and
1= corresponding to $= is

H(C)= 00

2
+

∞∑
==1

0= cos($=C) + 1= sin($=C).

Let’s consider the complex form of the Fourier series, which is analogous to
definition 9.1. It may be helpful to review Euler’s formula(s) – see ??.

Definition 9.2

The Fourier analysis of a periodic function H(C) is, for = ∈Z (negative and
nonnegative), period), and angular frequency $= = 2�=/),

2= =
1
)

ˆ
)

H(C)4−9$= C3C.

The Fourier synthesis of a periodic function H(C) with analysis components 2=
corresponding to $= is

H(C)=
∞∑

==−∞
2=4

9$= C .

We call the integer = a harmonic and the frequency associated with it,

$= = 2�=/),
the harmonic frequency. There is a special name for the first harmonic (= = 1): the
fundamental frequency. It is called this because all other frequency components
are integer multiples of it.
It is also possible to convert between the two representations above.

Definition 9.3

The complex Fourier analysis of a periodic function H(C) is, for = ∈Z and 0= and
1= as defined above,

2= =


1
2

(
0 |= | + 91 |= |

)
= < 0

1
2 00 = = 0.
1
2 (0= − 91=) = > 0

(9.1)

The sinusoidal Fourier analysis of a periodic function H(C) is, for = ∈Z≥0 and 2=
as defined above,

00 = 220

0= = 2= + 2−= and
1= = 9 (2= − 2−=) .

Fourier Series and Transforms 211

The harmonic amplitude �= is

�= =

√
02
= + 12

=

= 2
√
2=2−= .

Amagnitude line spectrum is a graph of the harmonic amplitudes as a function of
the harmonic frequencies. The harmonic phase is

�= =− arctan2(1= , 0=) (see equation (A.39))

= arctan2(=(2=),<(2=)). (9.2)

The illustration of figure 9.1 shows how sinusoidal components sum to represent
a square wave. A line spectrum is also shown.

Time

Frequency

Harmonic AmplitudeAmplitude

Figure 9.1. A partial sum of Fourier components of a square wave shown through
time and frequency. The spectral amplitude shows the amplitude of the corresponding
Fourier component.

Let us compute the associated spectral components in the following example.

Example 9.1

Compute the first five harmonic amplitudes that represent the line spectrum
for a square wave in the figure above.

212 Chapter 9

Assume a square wave with amplitude 1. Compute 0= :

0= =
2
)

ˆ)/2

−)/2
H(C) cos (2�=C/)) 3C

=− 2
)

ˆ 0

−)/2
cos (2�=C/)) 3C + 2

)

ˆ)/2

0
cos (2�=C/)) 3C

= 0. (cosine is even)

Compute 1= :

1= =
2
)

ˆ)/2

−)/2
H(C) sin (2�=C/)) 3C

=− 2
)

ˆ 0

−)/2
sin (2�=C/)) 3C + 2

)

ˆ)/2

0
sin (2�=C/)) 3C

=
2
=�

(1− cos(=�))

=

{
0 = even

4
=� = odd

.

Therefore,

�= =

√
02
= + 12

=

�0 = 0 (even)

�1 =
4
�

�2 = 0 (even)

�3 =
4

3�

�4 = 0 (even)

�5 =
4

5�
.

9.2 Complex Fourier Series Example LINK
91

There are several flavors of Fourier series problem: trigonomet-
ric/exponential, analysis/synthesis, plotting partial sums/plotting
spectra. Of course, problems just present us an opportunity to explore.

https://sys.ricopic.one/91
https://sys.ricopic.one/91

Fourier Series and Transforms 213

Example 9.2

Consider a recified sinusoid

5 (C)= |� cos($C)| (9.3)

for �, $, C ∈R, shown in figure 9.2. The fundamental period is) =�/$, half the
unrectified period.

1. Perform a complex Fourier analysis on 5 (C), computing the complex Fourier
components 2±= .

2. Compute and plot the magnitude and phase spectra.
3. Convert 2±= to trigonometric components 0= and 1= .

−2� 0 2�

0

�

$C

5(
C)

Figure 9.2. The function 5 (C)= |� cos($C)| plotted for several periods.

The complex Fourier analysis of definition 9.2 will be applied in a moment.
However, it is convenient to first convert 5 into an exponential. We can write 5
over a single period C ∈ [−)/2,)/2) as

|� cos($C)| = |�| | cos($C)| (absolute value property)

= |�| cos($C) (already positive)

= |�| 1
2

(
4 9$C + 4−9$C

)
. (Euler)

214 Chapter 9

Applying Fourier analysis à la definition 9.2 with harmonic frequency $= =

2�=/),

2= =
1
)

ˆ)/2

−)/2
5 (C)4−9$= C 3C

=
1
)

ˆ)/2

−)/2
|�| 1

2

(
4 9$C + 4−9$C

)
4−9$= C 3C

=
|�|
2)

ˆ)/2

−)/2

(
4 9$C + 4−9$C

)
4−9$= C 3C

=
|�|
2)

ˆ)/2

−)/2

(
4 9($−$=)C + 4−9($+$=)C

)
3C

=
|�|
2)

(
1

9($−$=)
4 9($−$=)C − 1

9($+$=)
4−9($+$=)C

)����)/2

−)/2

=
|�|
2)

(
1

9($−$=)
4 9($−$=))/2 − 1

9($+$=)
4−9($+$=))/2+

− 1
9($−$=)

4−9($−$=))/2 + 1
9($+$=)

4 9($+$=))/2
)

=
|�|

92)($−$=)
(
4 9($−$=))/2 − 4−9($−$=))/2

)
+

+ |�|
92)($+$=)

(
4 9($+$=))/2 − 4−9($+$=))/2

)
=

|�|
)($−$=)

sin(($−$=))/2) + |�|
)($+$=)

sin(($+$=))/2).

This can be simplified further if we substitute) =�/$ and $= = 2�=/) = 2=$,

2±= =
|�|

�(1− 2=) sin((1− 2=)�/2) + |�|
�(1+ 2=) sin((1+ 2=)�/2).

Using a product-to-sum trigonometric identity (equation (A.31)), this further
simplifies to

2= =
−2|�|

�(4=2 − 1) cos(�=), (9.4)

which, for = odd or even,

2= =

{
2|�|

�(4=2−1) = odd
−2|�|

�(4=2−1) = even.
(9.5)

Fourier Series and Transforms 215

Let’s continue in Python. Load Python packages as follows:

import numpy as np
import matplotlib.pyplot as plt
import sympy as sp

Define the symbolic variables as follows:

A, T = sp.symbols("A, T", real=True, positive=True)
t, w, wn = sp.symbols("t, w, wn", real=True)
n = sp.symbols("n", integer=True)

Define the function 5 as a symbolic expression:

f = sp.Abs(A) * sp.cos(w * t)
f = f.rewrite(sp.exp)
props = {w: sp.pi / T, wn: 2 * sp.pi * n / T} # Properties

Compute the Fourier coefficients 2= as follows:

c_n = sp.integrate(1/T *
f.subs(props) * sp.exp(-sp.I * wn * t),
(t, -T / 2, T / 2)

).subs(props).simplify(){
�
2 for) =−)

2= ∨) =)
2=

− 2(−1)=�
�
(
4=2−1

) otherwise

The first piecewise condition is impossible because = is an integer. (SymPy
should have caught this.) The second condition obtains for all =. We see that the
sign changes with = even or odd. Manually extracting the second case, we have

c_n = c_n.args[1][0]

We will need the positive = and negative = coefficients separately. Let’s define
them as follows:

c_n_pos = c_n.subs(n, sp.Abs(n))
c_n_neg = c_n.subs(n, -sp.Abs(n))

Let’s compute the harmonic amplitude |�= | and phase)= as follows:
C_n = 2 * sp.sqrt(c_n_pos * c_n_neg)
phi_n = sp.atan2(sp.im(c_n), sp.re(c_n))

4�
� |4=2 − 1|

�

(
1−�

(
− 2 (−1)= �
� (4=2 − 1)

))

216 Chapter 9

Here � is the Heaviside step function (0 for negative arguments and 1 for
positive arguments). The harmonic amplitude and phase can be plotted if we
lambdify them as follows:

C_n_fn = sp.lambdify((A, T, n), C_n, "numpy")
phi_n_fn = sp.lambdify((A, T, n), phi_n, "numpy")

Letting �= 1 and) = 1, let’s plot the harmonic amplitude and phase for the
first 10 harmonics as follows:

n_ = np.arange(0, 11)
A_, T_ = 1, 1
C_n_ = C_n_fn(A_, T_, n_)
phi_n_ = phi_n_fn(A_, T_, n_)
fig, ax = plt.subplots(2, 1, sharex=True)
ax[0].stem(n_, C_n_)
ax[0].set_ylabel(r"$|C_n|$")
ax[1].stem(n_, phi_n_)
ax[1].set_ylabel(r"$\angle C_n$")
ax[1].set_xlabel(r"n")
plt.show()

0.0

0.5

1.0

|�
=
|

0 2 4 6 8 10
=

0

2

∠
�
=

Figure 9.3. Harmonic amplitude and phase for the first 10 harmonics.

Now we convert the complex Fourier series coefficients 2= into real Fourier
series coefficients 0= and 1= as follows:

a_0 = 2 * c_n.subs(n, 0)
a_n = (c_n_pos + c_n_neg).simplify()
b_n = (sp.I * (c_n_pos - c_n_neg)).simplify()

4�
�

Fourier Series and Transforms 217

− 4 (−1)|= | �
� (4=2 − 1)

0
The result that 1= = 0 is expected because the function 5 is even.

9.3 Fourier Transform LINK
EX

We begin with the usual loading of modules.

import numpy as np # for numerics
import sympy as sp # for symbolics
import matplotlib.pyplot as plt # for plots!
from IPython.display import display, Markdown, Latex

Let’s consider a periodic function 5 with period) (T). Each period,
the function has a triangular pulse of width � (pulse_width) and height �/2.

period = 15 # period
pulse_width = 2 # pulse width

First, we plot the function 5 in the time domain. Let’s begin by defining 5 .

def pulse_train(t,T,pulse_width):
f = lambda x:pulse_width/2-abs(x) # pulse
tm = np.mod(t,T)
if tm <= pulse_width/2:

return f(tm)
elif tm >= T-pulse_width/2:

return f(-(tm-T))
else:

return 0

Now, we develop a numerical array in time to plot 5 .

N = 201 # number of points to plot
tpp = np.linspace(-period/2,5*period/2,N) # time values
fpp = np.array(np.zeros(tpp.shape))
for i,t_now in enumerate(tpp):

fpp[i] = pulse_train(t_now,period,pulse_width)

https://sys.ricopic.one/ex
https://sys.ricopic.one/ex

218 Chapter 9

p = plt.figure(1)
plt.plot(tpp,fpp,'b-',linewidth=2) # plot
plt.xlabel('time (s)')
plt.xlim([-period/2,3*period/2])
plt.xticks(

[0,period],
[0,'$T='+str(period)+'$ s']

)
plt.yticks([0,pulse_width/2],['0','$\delta/2$'])
plt.show() # display here

For �= 2 and) ∈ [5, 15, 25], the left-hand column of figure 9.4 shows two triangle
pulses for each period).
Consider the following argument. Just as a Fourier series is a frequency domain

representation of a periodic signal, a Fourier transform is a frequency domain
representation of an aperiodic signal (we will rigorously define it in a moment).
The Fourier series components will have an analog, then, in the Fourier transform.
Recall that they can be computed by integrating over a period of the signal. If
we increase that period infinitely, the function is effectively aperiodic. The result
(within a scaling factor) will be the Fourier transform analog of the Fourier series
components.
Let us approach this understanding by actually computing the Fourier series

components for increasing period) using definition 9.1.We’ll use sympy to compute
the Fourier series cosine and sine components 0= and 1= for component = (n) and
period) (T).

sp.var('x,a_0,a_n,b_n',real=True)
sp.var('delta,T',positive=True)
sp.var('n',nonnegative=True)
a0 = 2/T*sp.integrate(
(delta/2-sp.Abs(x)),
(x,-delta/2,delta/2) # otherwise zero
).simplify()
an = sp.integrate(

2/T*(delta/2-sp.Abs(x))*sp.cos(2*sp.pi*n/T*x),
(x,-delta/2,delta/2) # otherwise zero

).simplify()
bn = 2/T*sp.integrate(

(delta/2-sp.Abs(x))*sp.sin(2*sp.pi*n/T*x),
(x,-delta/2,delta/2) # otherwise zero

).simplify()
display(sp.Eq(a_n,an),sp.Eq(b_n,bn))

Fourier Series and Transforms 219

0= =


)
(
1−cos

(
��=
)

))
�2=2 for = ≠ 0

�2

2) otherwise

1= = 0
Furthermore, let us compute the harmonic amplitude

(f_harmonic_amplitude):

�= =

√
02
= + 12

=

which we have also scaled by a factor)/� in order to plot it with a convenient scale.
sp.var('C_n',positive=True)
cn = sp.sqrt(an**2+bn**2)
display(sp.Eq(C_n,cn))

�= =


)
���cos

(
��=
)

)
−1

���
�2=2 for = ≠ 0

�2

2) otherwise

Now we lambdify the symbolic expression for a numpy function.

cn_f = sp.lambdify((n,T,delta),cn)

Now we can plot.

omega_max = 12 # rad/s max frequency in line spectrum
n_max = round(omega_max*period/(2*np.pi)) # max harmonic
n_a = np.linspace(0,n_max,n_max+1)
omega = 2*np.pi*n_a/period
p = plt.figure(2)
markerline, stemlines, baseline = plt.stem(

omega, period/pulse_width*cn_f(n_a,period,pulse_width),
linefmt='b-', markerfmt='bo', basefmt='r-',
use_line_collection=True,

)
plt.xlabel('frequency ω (rad/s)')
plt.xlim([0,omega_max])
plt.ylim([0,pulse_width/2])
plt.yticks([0,pulse_width/2],['0','$\delta/2$'])
plt.show() # show here

220 Chapter 9

amplitude �=)/�

�
2

) = 5 s

�/2

5 10

�/2

�
2

) = 15 s

�/2

5 10

�/2

�
2

) = 25 s

�/2

time (s)

5 10

�/2

frequency $ (rad/s)

Figure 9.4. Triangle pulse trains (left column) with longer periods, descending, and
their corresponding line spectra (right column), scaled for convenient comparison.

The line spectra are shown in the right-hand column of figure 9.4. Note that with
our chosen scaling, as) increases, the line spectra reveal a distinct waveform.
Let � be the continuous function of angular frequency $

�($)= �
2
· sin2($�/4)

($�/4)2 .

First, we plot it.

Fourier Series and Transforms 221

F = lambda w: pulse_width/2* \
np.sin(w*pulse_width/(2*2))**2/ \
(w*pulse_width/(2*2))**2

N = 201 # number of points to plot
wpp = np.linspace(0.0001,omega_max,N)
Fpp = []
for i in range(0,N):

Fpp.append(F(wpp[i])) # build array of function values
axes = plt.figure(3)
plt.plot(wpp,Fpp,'b-',linewidth=2) # plot
plt.xlim([0,omega_max])
plt.yticks([0,pulse_width/2],['0','$\delta/2$'])
plt.xlabel('frequency ω (rad/s)')
plt.ylabel('$F(\omega)$')
plt.show()

0 2 4 6 8 10 12
frequency $ (rad/s)

0

�/2

Figure 9.5. �($), our mysterious Fourier series amplitude analog.

222 Chapter 9

Let’s consider the plot in figure 9.5 of �. It’s obviously the function emerging in
figure 9.4 from increasing the period of our pulse train.
Now we are ready to define the Fourier transform and its inverse.

Definition 9.4

Fourier transform (analysis):

�($)=
ˆ ∞

−∞
H(C) cos($C)3C

�($)=
ˆ ∞

−∞
H(C) sin($C)3C.

Inverse Fourier transform (synthesis):

H(C)= 1
2�

ˆ ∞

−∞
�($) cos($C)3$+ 1

2�

ˆ ∞

−∞
�($) sin($C)3$.

Definition 9.5

Fourier transform ℱ (analysis):

ℱ (H(C))=.($)=
ˆ ∞

−∞
H(C)4−9$C3C.

Inverse Fourier transform ℱ −1 (synthesis):

ℱ −1(.($))= H(C)= 1
2�

ˆ ∞

−∞
.($)4 9$C3$.

So now we have defined the Fourier transform. There are many applications,
including solving differential equations and frequency domain

representations—called spectra—of time domain functions.
There is a striking similarity between the Fourier transform and the Laplace

transform, with which you are already acquainted. In fact, the Fourier transform is
a special case of a Laplace transform with Laplace transform variable B = 9$ instead
of having some real component. Both transforms convert differential equations to
algebraic equations, which can be solved and inversely transformed to find time-
domain solutions. The Laplace transform is especially important to use when an
input function to a differential equation is not absolutely integrable and the Fourier
transform is undefined (for example, our definitionwill yield a transform for neither
the unit step nor the unit ramp functions). However, the Laplace transform is also
preferred for initial value problems due to its convenient way of handling them. The
two transforms are equally useful for solving steady state problems. Although the
Laplace transform has many advantages, for spectral considerations, the Fourier
transform is the only game in town.

Fourier Series and Transforms 223

A table of Fourier transforms and their properties can be found in ??.

Example 9.3

Consider the aperiodic signal H(C)= DB(C)4−0C with DB the unit step function and
0 > 0. The signal is plotted below. Derive the complex frequency spectrum and
plot its magnitude and phase.

−2 −1 0 1 2 3 4 5
0

0.5

1

C

H
(C
)

Figure 9.6. The signal H(C)= DB (C)4−0C .

The signal is aperiodic, so the Fourier transform can be computed from section 9.3:

.($)=
ˆ ∞

−∞
H(C)4 9$C3C (9.6)

=

ˆ ∞

−∞
DB(C)4−0C 4 9$C3C (def. of H)

=

ˆ ∞

0
4−0C 4 9$C3C (DB effect)

=

ˆ ∞

0
4(−0+9$)C3C (multiply)

=
1

−0 + 9$ 4
(−0+9$)C

����∞
0
3C (antiderivative)

=
1

−0 + 9$
(

lim
C→∞

4(−0+9$)C − 40
)

(evaluate)

=
1

−0 + 9$
(

lim
C→∞

4−0C 4 9$C − 1
)

(arrange)

=
1

−0 + 9$ ((0)(complex with mag≤ 1) − 1) (limit)

=
−1

−0 + 9$ (consequence)

224 Chapter 9

=
1

0 − 9$ (9.7)

=
0 + 9$
0 + 9$ · 1

0 − 9$ (rationalize)

=
0 + 9$
02 +$2

. (9.8)

0

0.5

1

|.
($

)|

−10 −8 −6 −4 −2 0 2 4 6 8 10

−1

0

1

$

∠
.
($

)

Figure 9.7. the magnitude and phase of the Fourier transform.

Fourier Series and Transforms 225

The magnitude and phase of this complex function are straightforward to
compute:

|.($)| =
√
<(.($))2 +=(.($))2

=
1

02 +$2

√
02 +$2

=
1√

02 +$2

∠.($)= arctan($/0).
Now we can plot these functions of $. Setting 0 = 1 (arbitrarily), we obtain the

plots of figure 9.7.

9.4 Discrete and Fast Fourier Transforms LINK
EK

Modern measurement systems primarily construct spectra by sam-
pling an analog electronic signal H(C) to yield the sample sequence
(H=) and perform a discrete Fourier transform.

Definition 9.6

The discrete Fourier transform (DFT) of a sample sequence (H=) of length # is (.<),
where < ∈ [0, 1, · · · , # − 1] and

.< =

#−1∑
==0

H=4
−92�<=/# .

The inverse discrete Fourier transform (IDFT) reconstructs the original sequence for
= ∈ [0, 1, · · · , # − 1] and

H= =
1
#

#−1∑
==0

.<4
92�<=/# .

The DFT (.<) has a frequency interval equal to the sampling frequency $B/#
and the IDFT (H=) has time interval equal to the sampling time). The first #/2+ 1
DFT (.<) values correspond to frequencies

(0, $B/#, 2$B/#, · · ·$B/2)
and the remaining #/2− 1 correspond to frequencies

(−$B/2,−(# − 1)$B/#, · · · ,−$B/#).
In practice, the definitions of the DFT and IDFT are not the most efficent methods

of computation. A clever algorithm called the fast Fourier transform (FFT) computes

https://sys.ricopic.one/ek
https://sys.ricopic.one/ek

226 Chapter 9

the DFT much more efficiently. Although it is a good exercise to roll our own FFT,
in this lecture we will use scipy’s built-in FFT algorithm, loaded with the following
command.

from scipy import fft

Now, given a time series array y representing (H8), the DFT (using the FFT
algorithm) can be computed with the following command.

fft(y)

In the following example, we will apply this method of computing the DFT.

Example 9.4

We would like to compute the DFT of a sample sequence (H=) generated by
sampling a spaced-out sawtooth. Let’s first generate the sample sequence and
plot it.
In addition to scipy, let’s import matplotlib for figures and numpy for
numerical computation.

import matplotlib.pyplot as plt
import numpy as np

We define several “control” quantities for the spaced-sawtooth signal.

f_signal = 48 # frequency of the signal
spaces = 1 # spaces between sawteeth
n_periods = 10 # number of signal periods
n_samples_sawtooth = 10 # samples/sawtooth

These quantities imply several “derived” quantities that follow.

n_samples_period = n_samples_sawtooth*(1+spaces)
n_samples = n_periods*n_samples_period
T_signal = 1.0/f_signal # period of signal
t_a = np.linspace(0,n_periods*T_signal,n_samples)
dt = n_periods*T_signal/(n_samples-1) # sample time
f_sample = 1./dt # sample frequency

We want an interval of ramp followed by an interval of “space” (zeros). The
following method of generating the sampled signal y helps us avoid leakage,
which we’ll describe at the end of the example.

Fourier Series and Transforms 227

arr_zeros = np.zeros(n_samples_sawtooth) # frac of period
arr_ramp = np.arange(n_samples_sawtooth) # frac of period
y = [] # initialize time sequence
for i in range(n_periods):

y = np.append(y,arr_ramp) # ramp
for j in range(spaces):

y = np.append(y,arr_zeros) # space

We plot the result in figure 9.8, generated by the following code.

fig, ax = plt.subplots()
plt.plot(t_a,y,'b-',linewidth=2)
plt.xlabel('time (s)')
plt.ylabel('y_n')
plt.show()

0.00 0.05 0.10 0.15 0.20

time (s)

0

2

4

6

8

y n

Figure 9.8. The sawtooth signal in the time-domain.

Now we have a nice time sequence on which we can perform our DFT. It’s easy
enough to compute the FFT.

Y = fft(y)/n_samples # FFT with proper normalization

228 Chapter 9

Recall that the latter values correspond to negative frequencies. In order to
plot it, we want to rearrange our Y array such that the elements corresponding
to negative frequencies are first. It’s a bit annoying, but c’est la vie.

Y_positive_zero = Y[range(int(n_samples/2))]
Y_negative = np.flip(

np.delete(Y_positive_zero,0),0
)
Y_total = np.append(Y_negative,Y_positive_zero)

Now all we need is a corresponding frequency array.

freq_total = np.arange(
-n_samples/2+1,n_samples/2

)*f_sample/n_samples

The plot, created with the following code, is shown in figure 9.9.

fig, ax = plt.subplots()
plt.plot(freq_total, abs(Y_total),'r-',linewidth=2)
plt.xlabel('frequency f (Hz)')
plt.ylabel('Y_m')
plt.show()

Fourier Series and Transforms 229

−400 −200 0 200 400

frequency f (Hz)

0.0

0.5

1.0

1.5

2.0

Y
m

Figure 9.9. The DFT spectrum of the sawtooth function.

Leakage The DFT assumes the sequence (H=) is periodic with period # . An
implication of this is that if any periodic components have period #short <# ,
unless # is divisible by #short, spurious components will appear in (.=). Avoid-
ing leakage is difficult, in practice. Instead, typically we use a window function

to mitigate its effects. Effectively, windowing functions—such as the Bartlett,
Hanning, and Hamming windows—multiply (H=) by a function that tapers to zero
near the edges of the sample sequence.
Numpy has several window functions such as bartlett(), hanning(), and

hamming().
Let’s plot the windows to get a feel for them – see figure 9.10.

https://docs.scipy.org/doc/numpy-1.13.0/reference/routines.window.html

230 Chapter 9

bartlett_window = np.bartlett(n_samples)
hanning_window = np.hanning(n_samples)
hamming_window = np.hamming(n_samples)

fig, ax = plt.subplots()
plt.plot(t_a,bartlett_window,
'b-',label='Bartlett',linewidth=2)

plt.plot(t_a,hanning_window,
'r-',label='Hanning',linewidth=2)

plt.plot(t_a,hamming_window,
'g-',label='Hamming',linewidth=2)

plt.xlabel('time (s)')
plt.ylabel('window w_n')
plt.legend()
plt.show()

0.00 0.05 0.10 0.15 0.20

time (s)

0.0

0.2

0.4

0.6

0.8

1.0

w
in

d
ow

w
n

Bartlett

Hanning

Hamming

Figure 9.10. Three window functions to minimize leakage.

Fourier Series and Transforms 231

9.5 Problems LINK
DL

Problem 9.1 LINKSTANISLAW Explain, in your own words (supplementary drawings
are ok), what the frequency domain is, how we derive models in it, and why it is
useful.

Problem 9.2 LINKPUG Consider the function

5 (C)= 8 cos(C) + 6 sin(2C) +
√

5 cos(4C) + 2 sin(4C) + cos(6C −�/2).
(a) Find the (harmonic) magnitude and (harmonic) phase of its Fourier series com-
ponents. (b) Sketch its magnitude and phase spectra. Hint: no Fourier integrals are

necessary to solve this problem.

Problem 9.3 LINKPONYO Consider the function with 0 > 0

5 (C)= 4−0 |C | .
From the transform definition, derive the Fourier transform �($) of 5 (C). Simplify
the result such that it is clear the expression is real (no imaginary component).

Problem 9.4 LINKSEESAW Consider the periodic function 5 :R→R with period)
defined for one period as

5 (C)= 0C for C ∈ (−)/2,)/2]
where 0,) ∈R. Perform a fourier series analysis on 5 . Letting 0 = 5 and) = 1, plot
5 along with the partial sum of the fourier series synthesis, the first 50 nonzero
components, over C ∈ [−),)].

Problem 9.5 LINKTOTORO Consider a periodic function H(C)with some period) ∈R
and some parameter � ∈R for which one period is shown in figure 9.11.
1. Perform a trigonometric Fourier series analysis of H(C) and write the Fourier

series .($).
2. Plot the harmonic amplitude spectrum of .($) for �=) = 1. Consider using

computing software.
3. Plot the phase spectrum of .($) for �=) = 1. Consider using computing

software.

https://sys.ricopic.one/dl
https://sys.ricopic.one/dl
https://sys.ricopic.one/stanislaw
https://sys.ricopic.one/pug
https://sys.ricopic.one/ponyo
https://sys.ricopic.one/seesaw
https://sys.ricopic.one/totoro

232 Chapter 9

−)/2 −)/4 0)/4)/2

−�

−�/2

0

�/2

�

C

H
(C
)

Figure 9.11. One period of the function H(C). Every line that appears straight is so.

Problem 9.6 LINKMALL Consider the function 5 :R→R defined as

5 (C)=
{
0 − 0 |C |/) for C ∈ [−),)]
0 otherwise

where 0,) ∈R. Perform a fourier transform analysis on 5 , resulting in �($). Plot �
for various 0 and).

Problem 9.7 LINKMIYAZAKI Consider the function 5 :R→R defined as
5 (C)= 04−1 |C−) |

where 0, 1,) ∈R. Perform a fourier transform analysis on 5 , resulting in �($). Plot
� for various 0, 1, and).

Problem 9.8 LINKHAKU Consider the function 5 :R→R defined as
5 (C)= 0 cos $0C + 1 sin $0C

where 0, 1, $0 ∈R constants. Perform a fourier transform analysis on 5 , resulting in
�($).2

Problem 9.9 LINKSECRETS This exercise encodes a “secret word” into a sampled
waveform for decoding via a discrete fourier transform (DFT). The nominal goal of
the exercise is to decode the secret word. Along the way, plotting and interpreting
the DFT will be important.
First, load relevant packages.

2. It may be alarming to see a Fourier transform of a periodic function! Strictly speaking, it does not
exist; however, if we extend the transform to include the distribution (not actually a function) Dirac �($),
the modified-transform does exist and is given in ??.

https://sys.ricopic.one/mall
https://sys.ricopic.one/miyazaki
https://sys.ricopic.one/haku
https://sys.ricopic.one/secrets

Fourier Series and Transforms 233

import numpy as np
import matplotlib.pyplot as plt
from IPython.display import display, Markdown, Latex

We define two functions: letter_to_number to convert a letter into an integer
index of the alphabet (a becomes 1, b becomes 2, etc.) and string_to_number_list
to convert a string to a list of ints, as shown in the example at the end.

def letter_to_number(letter):
return ord(letter) - 96

def string_to_number_list(string):
out = [] # list
for i in range(0,len(string)):

out.append(letter_to_number(string[i]))
return out # list

print(f"aces = { string_to_number_list('aces') }")

aces = [1, 3, 5, 19]

Now, we encode a code string code into a signal by beginning with “white
noise,” which is broadband (appears throughout the spectrum) and adding to it sin
functions with amplitudes corresponding to the letter assignments of the code and
harmonic corresponding to the position of the letter in the string. For instance, the
string 'bad'would be represented by noise plus the signal

2 sin 2�C + 1 sin 4�C + 4 sin 6�C.

Let’s set this up for secret word 'chupcabra'.

N = 2000
Tm = 30
T = float(Tm)/float(N)
fs = 1/T
x = np.linspace(0, Tm, N)
noise = 4*np.random.normal(0, 1, N)
code = 'chupcabra' # the secret word
code_number_array = np.array(string_to_number_list(code))
y = np.array(noise)
for i in range(0,len(code)):

y = y + code_number_array[i]*np.sin(2.*np.pi*(i+1.)*x)

For proper decoding, later, it is important to know the fundamental frequency of
the generated data.

print(f"fundamental frequency = {fs} Hz")

fundamental frequency = 66.66666666666667 Hz

234 Chapter 9

Now, we plot.

fig, ax = plt.subplots()
plt.plot(x,y)
plt.xlim([0,Tm/4])
plt.xlabel('time (s)')
plt.ylabel('y_n')
plt.show()

0 1 2 3 4 5 6 7

time (s)

−60

−40

−20

0

20

40

60

y n

Figure 9.12. The chupacabra signal.

Finally, we can save our data to a numpy file secrets.npy to distribute our
message.

np.save('secrets',y)

Now, I have done this (for a different secret word!) and saved the data; download
it here: ricopic.one/mathematical_foundations/source/secrets.npy
In order to load the .npy file into Python, we can use the following command.

secret_array = np.load('secrets.npy')

ricopic.one/mathematical_foundations/source/secrets.npy

Fourier Series and Transforms 235

Your job is to (a) perform aDFT, (b) plot the spectrum, and (c) decode themessage!
Here are a few hints.

1. Use from scipy import fft to do the DFT.
2. Use a hanningwindow to minimize the end-effects. See numpy.hanning for

instance. The fft call might then look like

2*fft(np.hanning(N)*secret_array)/N

where N = len(secret_array).
3. Use only the positive spectrum; you can lop off the negative side and double

the positive side.

Problem 9.10 LINKSOCIETY Derive a fourier transform property for expressions
including function 5 :R→R for

5 (C) cos($0C +#)
where $0 ,# ∈R.

Problem 9.11 LINKFLAPPER Consider the function 5 :R→R defined as
5 (C)= 0DB(C)4−1C cos($0C +#)

where 0, 1, $0 ,# ∈R and DB(C) is the unit step function. Perform a fourier transform
analysis on 5 , resulting in �($). Plot � for various 0, 1, $0, # and).

Problem 9.12 LINKEASTEGG Consider the function 5 :R→R defined as
5 (C)= 6(C) cos($0C)

where $0 ∈R and 6 :R→Rwill be defined in each part below. Perform a fourier
transform analysis on 5 for each 6 below for $1 ∈R a constant and consider how
things change if $1 →$0.

1. 6(C)= cos($1C)
2. 6(C)= sin($1C)

Problem 9.13 LINKSAVAGE An instrument called a “lock-in amplifier” can measure
a sinusoidal signal � cos($0C +#)= 0 cos($0C) + 1 sin($0C) at a known frequency
$0 with exceptional accuracy even in the presence of significant noise #(C). The
workings of these devices can be described in two operations: first, the following
operations on the signal with its noise, 51(C)= 0 cos($0C) + 1 sin($0C) +#(C),

52(C)= 51(C) cos($1C) and 53(C)= 51(C) sin($1C).
where $0 , $1 , 0, 1 ∈R. Note the relation of this operation to the Fourier transform
analysis of problem 9.12. The key is to know with some accuracty $0 such that the

https://sys.ricopic.one/society
https://sys.ricopic.one/flapper
https://sys.ricopic.one/eastegg
https://sys.ricopic.one/savage

236 Chapter 9

instrument can set $1 ≈$0. The second operation on the signal is an aggressive low-
pass filter. The filtered 52 and 53 are called the in-phase and quadrature components
of the signal and are typically given a complex representation

(in-phase) + 9 (quadrature).
Explain with fourier transform analyses on 52 and 53

1. what �2 =ℱ (52) looks like,
2. what �3 =ℱ (53) looks like,
3. why we want $1 ≈$0,
4. why a low-pass filter is desirable, and
5. what the time-domain signal will look like.

Problem 9.14 LINKSTRAWMAN Consider again the lock-in amplifier explored in prob-
lem 9.13. Investigate the lock-in amplifier numerically with the following steps.

1. Generate a noisy sinusoidal signal at some frequency $0. Include enough
broadband white noise that the signal is invisible in a time-domain plot.

2. Generate 52 and 53, as described in problem 9.13.
3. Apply a time-domain discrete low-pass filter to each 52 ↦→)2 and 53 ↦→

)3, such as scipy’s scipy.signal.sosfiltfilt, to complete the lock-in
amplifier operation. Plot the results in time and as a complex (polar) plot.

4. Perform a discrete fourier transform on each 52 ↦→ �2 and 53 ↦→ �3. Plot the
spectra.

5. Construct a frequency domain low-pass filter � and apply it (multiply!) to
each �2 ↦→ �′2 and �3 ↦→ �′3. Plot the filtered spectra.

6. Perform an inverse discrete fourier transform to each �′2 ↦→ 5 ′2 and �
′
3 ↦→ 5 ′3 .

Plot the results in time and as a complex (polar) plot.
7. Compare the two methods used, i.e. time-domain filtering versus frequency-

domain filtering.

https://sys.ricopic.one/strawman
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.sosfiltfilt.html#scipy.signal.sosfiltfilt

10 Laplace Transforms LINK
KA

In this chapter, we consider the Laplace transform.

10.1 Introduction LINK
JX

The Laplace transform1 is a generalized Fourier transform that exists
for a much broader class of functions. In fact, every function for which
there is a Fourier transform, there is also a Laplace transform—but the reverse
does not hold. Its excellence for linear system analysis cannot be overstated, and
leads some to undervalue the Fourier transform. However, the Fourier transform is
much more conceptually grounded in the frequency domain given that it can be
understood as an extension of the Fourier series.
The Laplace transform’s conceptual grounding has the same root, but in a less-

recognizable form since the explicit frequency variable $ will be consumed by the
Laplace transform B, introduced in a moment. But first, we motivate the Laplace
transform by identifying a function of great importance to system analysis that
does not have a Fourier transform: the unit step function DB(C).
The Fourier transorm of DB(C) does not exist because its defining improper integral

does not converge in the absolute sense—a situation we describe as non-integrable.
The Laplace transform does exist for DB(C) because it patches the Fourier transform
integrand with a weighting function F :R→R defined as

F(C)= 4−�C

for � ∈R. Clearly such a factor may drive the integrand to zero for some positive �.
Let’s take the Fourier transform of a function of time 5 multiplied by this weightin

1. See (Rowell1997) for an introduction that inspires our own.

https://sys.ricopic.one/ka
https://sys.ricopic.one/ka
https://sys.ricopic.one/jx
https://sys.ricopic.one/jx

238 Chapter 10

factor (as a foreshadowing of how the Laplace transform will use it):

ℱ (5 (C)F(C))=
ˆ ∞

−∞
5 (C)F(C)4−9$C 3C (FT def.)

=

ˆ ∞

−∞
5 (C)4−�C 4−9$C 3C (10.1)

=

ˆ ∞

−∞
5 (C)4−(�+9$)C 3C. (10.2)

We see the factor �+ 9$ has emerged. This factor also arises in the Laplace transform,
so we make an explicit definition.

Definition 10.1

The Laplace B ∈C (a.k.a. complex frequency) is defined as
B = �+ 9$

for �, $ ∈R.

The ubiquity of B has generated a common term called the s-plane, which is
used as an alias for the set of complex numbers C, which, when considering its real
and imaginary parts to constitute two Cartesian axes (i.e. R2) charts a plane.
Returning to our Fourier transform,

ℱ (5 (C)F(C))=
ˆ ∞

−∞
5 (C)4−BC 3C.

This is sometimes called the two-sided Laplace trnasform, which is rarely used.
However, it is instructive to recognize that potentially, for some region of B-values
in the complex plane, the transform exists. We call this the region of convergence
(ROC) of the transform.
Now consider what happens if 5 (C)= DB(C), the unit step that doesn’t have a

Fourier transform, but the two-sided transform of equation (10.1) yields

ℱ (DB(C)F(C))=
ˆ ∞

−∞
DB(C)4−�C 4−9$C 3C

ℱ (DB(C)4−�C),
a straightup Fourier transform of DB(C)4−�C . Consulting ??, we see that the transform
is

ℱ (DB(C)4−�C)=
1

�+ 9$.

So, although ℱ (DB(C)) does not exist, ℱ (DB(C)4−�C) does. This bodes well for the
Laplace transform.

Laplace Transforms 239

10.2 Laplace Transform and Its Inverse

10.2.1 The Laplace Transform LINK
RE

The two-sided definition of the Laplace transform was encountered
in ??. This is rarely used in engineering analysis, which prefers the
following one-sided transform.2

Definition 10.2

Let 5 :R+ →R be a function of time C for which 5 (C)= 0 for C < 0. The Laplace
transform3 ℒ :)→ (of 5 is defined as4

(ℒ 5)(B)=
ˆ ∞

0
5 (C)4−BC 3C.

As with the Fourier transform image, it is customary to capitalize the Laplace
transform image; e.g.5

�(B)= (ℒ 5)(B).
As with the two-sided Laplace transform, if the transform exists, it will do so

for some region of convergence (ROC), a subset of the B-plane. It is best practice to
report a Laplace transform image paired with its ROC.
On the imaginary axis (�= 0), B = 9$ and the Laplace transform is

(ℒ 5)(B)=
ˆ ∞

0
5 (C)4−9$C 3C,

which is the one-sided Fourier transform! Therefore, when the Laplace transform
exists for a region of convergence that includes the imaginary axis, the one-sided
Fourier transform also exists and6

(ℱ 5)($)= (ℒ 5)(B)|B ↦→9$

or, haphazardly using � to denote both transforms,

�($)= �(B)|B ↦→9$.

2.We will refer exclusively to the one-sided transform as the Laplace transform and will qualify “two-
sided” in the other case.

3. Here) = !2(0,∞) is the set of square-integrable functions on the positive reals and (=�2(C+) is a
Hardy space with square norm on the (complex) right half-plane partington2004. This highly mathe-
matical notation highlights the fact that the Laplace transform maps a real function of C to a complex
function of B.

4. For more detail, see Rowell1997empty citation, dyke2014empty citation, and
mathews2012empty citation.

5. Another common notation is ℒ(5 (C)).
6. The same relation can be shown to hold between the two-sided Fourier and Laplace transforms.

https://sys.ricopic.one/re
https://sys.ricopic.one/re

240 Chapter 10

Box 10.1

Laplace terminology
The terminology in the literature for the Laplace transform and its inverse, intro-
duced next, is inconsistent. The “Laplace transform” is at once taken to be a
function that maps a function of C to a function of B and a particular result of that
mapping (technically the image of the map), which is a complex function of B.
Evenwewill say things like “the value of the Laplace transform �(B) at B = 2+ 94,”
by which we really mean the image of the complex function �(B)|B→2+94 that was
the image of the Laplace transform map of the real function of time 5 (C). You can
see why we shorten it.

10.2.2 The Inverse Laplace Transform

As with the Fourier transform, the Laplace transform has an inverse.

Definition 10.3

Let B ∈C be the Laplace B and �(B) a Laplace transform image of real function
5 (C). The inverse Laplace transform ℒ−1 : (→) is defined as

(ℒ−1�)(C)= 1
92�

ˆ �+9∞

�−9∞
�(B)4 BC 3B.

real functions
of time t

complex functions
of complex frequency s

preimage of
image of

preimage of
image of

Figure 10.1. Laplace transform maps ℒ and ℒ−1 on the function spaces) and (.

Laplace Transforms 241

As is illustrated in figure 10.1, it can be shown that the inverse Laplace transform
image of a Laplace transform image of 5 (C) equals 5 (C) and vice-versa; i.e.

(ℒ−1ℒ 5)(C)= 5 (C) and

(ℒℒ−1�)(B)= �(B).
That is, the inverse Laplace transform is a true inverse. Therefore, we call the Laplace
transform and its inverse a pair.

Figure 10.2. Detail view of Laplace transform maps ℒ and ℒ−1 along with their image
functions 5 and �.

A detail view of figure 10.1 is given in figure 10.2.

Example 10.1

Returning to the troublesome unit step 5 (C)= DB(C), calculate its Laplace
transform image �(B).

Directly applying the definition,

�(B)=
ˆ ∞

0
5 (C)4−BC 3C (10.3)

= (10.4)

=
−1
B
4−BC

����∞
C=0

(10.5)

=

(
lim
C→∞

−4−(�+9$)C/B
)
− −1
B
40 (B = �+ 9$)

= 1/B. (� > 0)

Note that the limit only converges for � > 0, so the region of convergence is the
right half B-plane, exclusive of the imaginary axis. This exclusion tells us what

242 Chapter 10

we already know, that the Fourier transform DB does not exist. However, the
Laplace transform does exist and is simply 1/B!

Both the Laplace transform and especially its inverse are typically calculated
with the help of software and tables such as ??, which includes specific images and
important properties. We will first consider these properties in ??, then turn to the
use of software and tables in ??where we focus on the more challenging inverse
calculation.

10.3 Properties of the Laplace Transform LINK
GA

The Laplace transform has several important properties, several of
which follow from the simple fact of its integral definition. We state
the properties without proof, but several are easy to show and make good exercises.

10.3.1 Existence

As we have already seen, the Laplace transform exists for more functions than
does the Fourier transform. Let 5 :R+ →R have a finite number of finite-magnitude
discontinuites. If there can be found ",
 ∈R such that

| 5 (C)| ≤"4
C ∀C ∈R+
then the transform exists (converges) for � >
.
Note that this is a sufficient condition, not necessary. That is, there may be (and

are) functions for which a transform exists that do not meet the condition above.

10.3.2 Linearity

The Laplace transform is a linear map. Let 0, 1 ∈R; 5 , 6 ∈) where) is a set of
functions of nonnegative time C; and �, � the Laplace transform images of 5 , 6. The
following identity holds:

ℒ(0 5 (C) + 16(C))= 0�(B) + 1�(B).

10.3.3 Time-Shifting

Shifting the time-domain function 5 (C) in time corresponds to a simple product in
the B-domain Laplace transform image. Let the Laplace transform image of 5 (C) be
�(B) and � ∈R. The following identity holds:

ℒ(5 (C + �))= 4 B��(B).

https://sys.ricopic.one/ga
https://sys.ricopic.one/ga

Laplace Transforms 243

10.3.4 Time-Differentiation

Differentiating the time-domain function 5 (C)with respect to time yields a simple
relation in the B-domain. Let �(B) be the Laplace transform image of 5 (C) and 5 (0)
the value of 5 at C = 0. The following identity holds:7

ℒ 35

3C
= B�(B) − 5 (0).

10.3.5 Time-Integration

Similarly, integrating the time-domain function 5 (C)with respect to time yields a
simple relation in the B-domain. Let �(B) be the Laplace transform image of 5 (C).
The following identity holds:8

ℒ
ˆ C

0
5 (�) 3�= 1

B
�(B).

10.3.6 Convolution

The convolution operator ∗ is defined for real functions of time 5 , 6 by

(5 ∗ 6)(C) ≡
ˆ ∞

−∞
5 (�)6(C − �) 3�.

This too has a simple Laplace transform. Let �, � be the Laplace transforms of 5 , 6.
The following identity holds:

ℒ(5 ∗ 6)(C)= �(B)�(B).

10.3.7 Final Value Theorem

The final value theorem is a property of the Laplace transform. This theorem allows
the computation of constant time-domain steady-state values from the frequency
domain, which can be quite convenient when the inverse Laplace transform is elu-
sive. Let 5 (C) have tranform �(B) and its time-derivative have an existing transform.
If the limit in time exists,

lim
C→∞

5 (C)= lim
B→0

B�(B).

Note that if the steady-state of 5 (C) is not a constant (e.g. it is sinusoidal), the limit
does not exist.

10.4 Inverse Laplace Transforming

7. For this reason, it is common for B to be called the differentiator, but this is imprecise and pretty bush
league.

8. For this reason, it is common for 1/B to be called the integrator.

244 Chapter 10LINK
DC

The inverse Laplace transform is a path integral in the B-plane, and it can be quite
challenging to calculate. Therefore, software and tables such as ?? are typically
applied, instead. In system dynamics, it is common to apply the inverse Laplace
transform to a ratio (or products thereof) of polynomials in B like

0<B
< + 0<−1B

<−1 + · · · + 00

1=B= + 1=−1B=−1 + · · · + 10

for 08 , 18 ∈R. However, inverse transforms of general ratios such as these do not
appear in the tables. Instead, low-order polynomial ratios do appear and have simple
inverse Laplace transforms. Suppose we could decompose section 10.4 into smaller
additive terms. Due to the linearity property of the inverse Laplace transform, each
transform could be calculated separately and consequently summed.
The name given to the process of decomposing section 10.4 into smaller additive

terms is calledpartial fraction expansion(Rowell1997). It is not particularly difficult,
but it is rather tedious. Fortunately, several software tools have been developed for
this expansion.

10.4.1 Inverse Transform with a Partial Fraction Expansion in Matlab

Matlab’s Symbolic Math toolbox function partfrac is quite convenient.

help partfrac

Let’s apply this to an example.

Example 10.2

What is the inverse Fourier transform image of

�(B)= B2 + 2B + 2
B2 + 6B + 36

· 6
B + 6

?

First, define a symbolic s.

syms s 'complex'

Now we can define F, a symbolic expression for �(B).
F = (s^2 + 2*s + 2)/(s^2 + 6*s + 36)*6/(s+6);

Now all that remains is the apply partfrac.

F_pf = partfrac(F)

F_pf =
13/(3*(s + 6)) + ((5*s)/3 - 24)/(s^2 + 6*s + 36)

https://sys.ricopic.one/dc
https://sys.ricopic.one/dc

Laplace Transforms 245

Now consider the Laplace transform table. The first term can easily be inverted:

ℒ−1
(

13
3

· 1
B + 6

)
=

13
3
ℒ−1 1

B + 6
(linearity)

13
3
4−6C . (table)

The second term, call it �2, is not quite as obvious, but the preimage

B − 0
(B − 0)2 +$2

is close. Let’s first make the numerator match:

5
3
B − 24=

5
3

(
B − 72

5

)
,

so 01 = 72/5. Now we need the term (B − 01)2 in the denominator. Asserting the
equality

B2 + 6B + 36= (B − 02)2 +$2

= B2 − 202B + 02
2 +$2.

Equating the B0 coefficents yields $2 = 36− 02
2 and equating the B coefficient

yields 02 =−3≠ 01 = 72/5, so no cigar! What if we “force” the rule by using a new
0′1 = 02, which can be achieved by adding a term (and subtracting it elsewhere)?
We need 0′1 =−3, so if we add (and subtract) a term

5
3 (01 − 0′1)

(B − 02)2 +$2
,

like

�2 =

5
3 (B − 01)

(B − 02)2 +$2
+

5
3 (01 − 0′1)

(B − 02)2 +$2
−

5
3 (01 − 0′1)

(B − 02)2 +$2

we can combine the first two terms to yield

�2 =

5
3 (B − 0′1)

(B − 02)2 +$2
−

5
3 (01 − 0′1)

(B − 02)2 +$2

where we recall that 0′1 = 02 by construction.
Now the expression is

�2 =

5
3 (B − 02)

(B − 02)2 +$2
−

5
3 (01 − 02)

(B − 02)2 +$2

The first term is, by construction, in the Laplace transform table. The second
term is close to

$

(B − 0)2 +$2

246 Chapter 10

for which we must make the numerator equal $. Our $2 = 36− 02
2 = 27, so $=

±
√

27. The current numerator is

5
3
(01 − 02)=

5
3

(
72
5

+ 3
)

= 29.

So we factor out 29/
√

27 to yield
29√
27
$

(B − 02)2 +$2

Returning to �2, we have arrived at

�2 =

5
3 (B − 02)

(B − 02)2 +$2
−

29√
27
$

(B − 02)2 +$2

Now the inverse transform is

ℒ−1�2 =
5
3
ℒ−1 (B − 02)

(B − 02)2 +$2
− 29√

27
ℒ−1 $

(B − 02)2 +$2
(linearity)

=
5
3
4 02C cos $C − 29√

27
4 02C sin $C. (10.6)

Simple! Putting it all together, then,

�(B)= 13
3
4−6C + 5

3
4−3C cos(3

√
3C) − 29

3
√

3
4−3C sin(3

√
3C). (10.7)

You may have noticed that even with Matlab’s help with the partial fraction
expansion, the inverse Laplace transform was a bit messy. This will motivate you
to learn the technique in the next section.

10.4.2 Just Clubbing It with Matlab

Sometimes we can just use Matlab (or a similar piece of software) to compute the
transform.
Matlab’s Symbolic Math toolbox function for the inverse Laplace transform is

ilaplace (and for the Laplace transform, laplace).

help ilaplace

Let’s apply this to the same example.

Laplace Transforms 247

Example 10.3

What is the inverse Laplace transform image of

�(B)= B2 + 2B + 2
B2 + 6B + 36

· 6
B + 6

?

Use Matlab’s ilaplace.

First, define a symbolic s.

syms s 'complex'

Now we can define F, a symbolic expression for �(B).
F = (s^2 + 2*s + 2)/(s^2 + 6*s + 36)*6/(s+6);

Now all that remains is the apply ilaplace.

F_pf = ilaplace(F)

F_pf =
(13*exp(-6*t))/3 + (5*exp(-3*t)*(cos(3*3^(1/2)*t) -

(29*3^(1/2)*sin(3*3^(1/2)*t))/15))/3↩→

This is easily seen to be equivalent to our previous result

�(B)= 13
3
4−6C + 5

3
4−3C cos(3

√
3C) − 29

3
√

3
4−3C sin(3

√
3C).

10.5 Solving Io ODEs with Laplace LINK
B7

Laplace transforms provide a convenient method for solving input-
output (io) ordinary differential equations (ODEs).
Consider a dynamic system described by the io ODE—with C time, H the output,

D the input, constant coefficients 08 , 1 9 , order =, and < ≤ = for = ∈N0—as:

8
3=H

3C=
+ 0=−1

3=−1H

3C=−1
+ · · · + 01

3H

3C
+ 00H =

1<
3<D

3C<
+ 1<−1

3<−1D

3C<−1
+ · · · + 11

3D

3C
+ 10D.

Re-written in summation form,
=∑
8=0

08H
(8)(C)=

<∑
9=0

1 9D
(9)(C),

where we use Lagrange’s notation for derivatives, and where, by convention, 0= = 1.

https://sys.ricopic.one/b7
https://sys.ricopic.one/b7
https://en.wikipedia.org/wiki/Notation_for_differentiation#Lagrange's_notation

248 Chapter 10

The Laplace transform ℒ of section 10.5 yields

ℒ
=∑
8=0

08H
(8)(C)=ℒ

<∑
9=0

1 9D
(9)(C) ⇒ (10.8)

=∑
8=0

08ℒ
(
H(8)(C)

)
=

<∑
9=0

1 9ℒ
(
D(9)(C)

)
. (linearity)

In the next move, we recursively apply the differentiation property to yield the
following

=∑
8=0

08

©­­­­­­«
B 8.(B) +

8∑
:=1

B 8−:H(:−1)(0)︸ ︷︷ ︸
�8 (B)

ª®®®®®®¬
=

<∑
9=0

1 9B
9*(B),

where terms in �8(B) arise from the initial conditions. Splitting the left outer sum
and solving for .(B),

=∑
8=0

08B
8.(B) +

=∑
8=0

08 �8(B)=
<∑
9=0

1 9B
9*(B) ⇒ (10.9)

=∑
8=0

08B
8.(B)=

<∑
9=0

1 9B
9*(B) −

=∑
8=0

08 �8(B) ⇒ (10.10)

.(B)
=∑
8=0

08B
8 =*(B)

<∑
9=0

1 9B
9 −

=∑
8=0

08 �8(B) ⇒ (10.11)

.(B)=
∑<
9=0 1 9B

9∑=
8=0 08B

8
*(B)︸ ︷︷ ︸

.fo(B)

+
−∑=

8=0 08 �8(B)∑=
8=0 08B

8︸ ︷︷ ︸
.fr(B)

. (10.12)

So we have derived the Laplace transform image .(B) in terms of the forced and
free responses (still in the B-domain, of course)! For a solution in the time-domain,
we must inverse Laplace transform:

H(C)= (ℒ−1.fo)(C)︸ ︷︷ ︸
Hfo(C)

+ (ℒ−1.fr)(C)︸ ︷︷ ︸
Hfr(C)

.

This is an important result!

Laplace Transforms 249

Example 10.4

Consider a system with step input D(C)= 7DB(C), output H(C), and io ODE
¥H + 2 ¤H + H = 2D.

Solve for the forced response Hfo(C)with Laplace transforms.

From section 10.5,

Hfo(C)= (ℒ−1.fo)(C) (10.13)

=ℒ−1

(∑<
9=0 1 9B

9∑=
8=0 08B

8
*(B)

)
(equation (10.12))

=ℒ−1
(

2
B2 + 2B + 1

*(B)
)
. (section 10.5)

We can D(C) for*(B):

*(B)= (ℒD)(B)
= 7(ℒDB)(B)

=
7
B
,

where the last equality follows from a transform easily found in ??.
Returning to the time response ,

Hfo(C)=ℒ−1
(

2
B2 + 2B + 1

*(B)
)

=ℒ−1
(

2
B2 + 2B + 1

· 7
B

)
.

We can use Matlab’s Symbolic Math toolbox function partfrac to perform
the partial fraction expansion.

syms s 'complex'
Y = 2/(s^2 + 2*s + 1)*7/s;
Y_pf = partfrac(Y)

Y_pf =

14/s - 14/(s + 1)^2 - 14/(s + 1)

250 Chapter 10

Or, a little nicer to look at,

.(B)= 14
(

1
B
− 1
(B + 1)2 − 1

B + 1

)
.

Substituting this into our solution,

Hfo(C)= 14ℒ−1
(

1
B
− 1
(B + 1)2 − 1

B + 1

)
(linearity)

= 14
(
ℒ−1 1

B
−ℒ−1 1

(B + 1)2 −ℒ−1 1
B + 1

)
(10.14)

= 14
(
DB(C) − C4−C − 4−C

)
(??)

= 14
(
DB(C) − (C + 1)4−C

)
. (10.15)

So the forced response starts at 0 and decays to a
steady 14.

Laplace Transforms 251

10.6 Problems LINK
U2

https://sys.ricopic.one/u2
https://sys.ricopic.one/u2

11 Transfer Functions LINK
S6

In this chapter, we use the Laplace transform to introduce one of the most ubiqui-
tous types of mathematical dynamic system representation: the transfer function.
The transfer function joins the state-space model and the I/O ODE mathematical
representations of dynamic systems, the third of our four mathematical representa-
tions. The fourth, the frequency response function, is closely related to the transfer
function and is introduced in chapter 13.
As we will see in section 11.1, the transfer function is closely related to the I/O

ODE. The transfer function encodes the same information as the I/O ODE, but in a
form that highlights the system’s frequency response and the relation between an
input and an output.

11.1 Introducing Transfer Functions LINK
LG

We begin our discussion of transfer functions with its definition.

11.1.1 Defining Transfer Functions

Let a system have an input D and an output H. Let the Laplace transform of each
be denoted * and ., both functions of complex Laplace transform variable B. A
transfer function � is defined as the ratio of the Laplace transform of the output
over the input:

�(B)= .(B)
*(B) . (11.1)

The transfer function is exceedingly useful in many types of analysis. One of
its most powerful aspects is that it gives us access to thinking about systems as
operating on an input D and yielding an output H.

https://sys.ricopic.one/s6
https://sys.ricopic.one/s6
https://sys.ricopic.one/lg
https://sys.ricopic.one/lg

254 Chapter 11

11.1.2 Bridging Transfer Functions and I/O Differential Equations

Consider a dynamic system described by the input-output differential equation—with
variable H representing the output, dependent variable time C, variable D representing
the input, constant coefficients 08 , 1 9 , order =, and < ≤ = for = ∈N0—as:

3=H

3C=
+ 0=−1

3=−1H

3C=−1
+ · · · + 01

3H

3C
+ 00H =

1<
3<D

3C<
+ 1<−1

3<−1D

3C<−1
+ · · · + 11

3D

3C
+ 10D. (11.2)

The Laplace transform ℒ of equation (11.2) yields something interesting (assum-
ing zero initial conditions):

ℒ
(
3=H

3C=
+ 0=−1

3=−1H

3C=−1
+ · · · + 01

3H

3C
+ 00H

)
=

ℒ
(
1<
3<D

3C<
+ 1<−1

3<−1D

3C<−1
+ · · · + 11

3D

3C
+ 10D

)
⇒

ℒ
(
3=H

3C=

)
+ 0=−1ℒ

(
3=−1H

3C=−1

)
+ · · · + 01ℒ

(
3H

3C

)
+ 00ℒ (H)=

1<ℒ
(
3<D

3C<

)
+ 1<−1ℒ

(
3<−1D

3C<−1

)
+ · · · + 11ℒ

(
3D

3C

)
+ 10ℒ (D) ⇒

B=. + 0=−1B
=−1. + · · · + 01B. + 00. =

1<B
<* + 1<−1B

<−1* + · · · + 11B* + 10*.

Solving for .,

. =
1<B

< + 1<−1B
<−1 + · · · + 11B + 10

B= + 0=−1B=−1 + · · · + 01B + 00
*.

The inverse Laplace transform ℒ−1 of . is the forced response. However, this is
not our primary concern; rather, we are interested to solve for the transfer function
� as the ratio of the output transform . to the input transform* , i.e.

�(B) ≡ .(B)
*(B)

=
1<B

< + 1<−1B
<−1 + · · · + 11B + 10

B= + 0=−1B=−1 + · · · + 01B + 00
.

Exactly the reverse procedure, then, can be used to convert a given transfer
function to an input-output differential equation.

Transfer Functions 255

Example 11.1

The circuit shown has input-output differential equation

!
32E!

3C2
+' 3E!

3C
+ 1
�
E! = !

32+B

3C2
.

What is the transfer function from +B to E!?

+
−+B

'
�

!

By inspection,

�(B)= +!(B)
+B(B)

=
!B2

!B2 +'B + 1/� .

11.1.3 Bridging Transfer Functions and State-Space Models

Given a system in the standard form of a state equation,

3x
3C

=�x + �u ,

we take the Laplace transform to yield, assuming zero initial conditions,

B^ =�^ + �[,
which can be solved for the state:

^ = (B� −�)−1�[,

where � is the identity matrix with the same dimension as that of �. The standard
form of the output equation yields the output solution

_ =�[,

where we define thematrix transfer function � to be

�(B)=�(B� −�)−1�+�.
The element �8 9 is a transfer function from the 9th input* 9 to the 8th output .8 .

256 Chapter 11

The reverse procedure of deriving a state-space model from a transfer function is
what is called a state-space realization, which is not a unique operation (there are
different realizations for a single transfer function) and is not considered here.

Example 11.2

Given the linear state-space model

¤x =
[
−3 4
−1 1

]
x +

[
1
0

]
u

y=

[
1 0
0 1

]
x +

[
0
0

]
u ,

derive the matrix transfer function.

Directly apply the formula, as follows.

�(B)=�(B� −�)−1�+�

=�

([
B 0
0 B

]
−

[
−3 4
−1 1

])−1

�+�

=�

[
B + 3 −4

1 B − 1

]−1

�+�

=
1

(B + 3)(B − 1) − (−4)(1)�
[
B − 1 4
−1 B + 3

]
�+�

=
1

B2 + 2B + 1

[
B − 1 4
−1 B + 3

] [
1
0

]
=

1
B2 + 2B + 1

[
B − 1
−1

]
=


B − 1

B2 + 2B + 1−1
B2 + 2B + 1

 .

Transfer Functions 257

Example 11.3

For the following state-space model, derived in Example example 3.2, derive
the io differential equations for each output variable:

3x
3C

=

[−1
'1�

−1
�

1/! −'2/!

]
x +

[1
'1�

0

]
u

y=


0 1

−1/'1 0
0 '2

 x +


0
1/'1

0

 u.
The output variables are 8!, �(, and E'2 .

We proceed in two steps: state-space to transfer functions, then transfer functions
to io differential equations. The matrix transfer function is

�(B)=�(B� −�)−1�+�

=


0 1

−1/'1 0
0 '2


([
B 0
0 B

]
−

[−1
'1�

−1
�

1/! −'2/!

])−1 [1
'1�

0

]
+


0

1/'1

0


=

1
!'1�B2 + (!+'1'2�)B +'1 +'2


1

!�B2 +'2�B + 1
'2

 .
For notes on invertingmatrices, see appendixA.3. Note thatmost calculators cannot

do symbolic matrix inverses. This contains three transfer functions: 8!(B)/+((B),
�((B)/+((B), and E'2(B)/+((B). Let’s unpack the first one to get a feel for how this
works:

8!(B)
+((B)

=
1

!'1�B2 + (!+'1'2�)B +'1 +'2
⇒(

!'1�B
2 + (!+'1'2�)B +'1 +'2

)
8!(B)=+((B).

(rearranged)

From this last expression, recalling that B is the Laplace-domain differentiator, the
following (time-domain) differential equation can be constructed by inspection:

!'1�
328!

3C2
+ (!+'1'2�)

38!

3C
+ ('1 +'2)8! =+(.

258 Chapter 11

Similarly, the other two differential equations are:

!'1�
32�(

3C2
+ (!+'1'2�)

3�(

3C
+ ('1 +'2)�(= !�

32+(

3C2
+'2�

3+(

3C
++(

and

!'1�
32E'2

3C2
+ (!+'1'2�)

3E'2

3C
+ ('1 +'2)E'2 ='2+(.

ex:ss_to_ode_01

11.2 Poles and Zeros LINK
I4

Two important types of objects defined from a transfer function �
can be used to characterize a system’s behavior: poles and zeros.

Definition 11.1

Let a system have transfer function �. Its poles are values of B for which

|�(B)| →∞.

A transfer function written as a ratio has poles wherever the denominator is zero;
that is, B for which1

den�(B)= 0.

Definition 11.2

Let a system have transfer function �. Its zeros are values of B for which

|�(B)| → 0.

A transfer function written as a ratio has zeros wherever the numerator is zero;
that is, B for which2

num�(B)= 0.

1. It is common to use this as the definition of a pole, which allows us to talk of “pole-zero cancellation.”
Occasionally we will use this terminology.

2. It is common to use this as the definition of a zero, which allows us to talk of “pole-zero cancellation.”
Occasionally we will use this terminology.

https://sys.ricopic.one/i4
https://sys.ricopic.one/i4

Transfer Functions 259

Given a transfer function� with = poles ?8 and � zeros I 9 , we can write, for ∈R,

�(B)=

�∏
9=1

B − I 9

=∏
8=1

B − ?8
.

Poles and zeros can define a single-input, single-output (SISO) system’s dynamic
model, within a constant.
Recall that, even for multiple-input, multiple-output (MIMO) state-space models,

the denominator of every transfer function is the corresponding system’s character-
istic equation—the roots of which dominate the system’s response and are equal to
its eigenvalues. It is now time to observe a crucial identity.

Corollary 11.3: Poles = eigenvalues = char. eq. roots

system’s poles equal its eigenvalues equal its characteristic equation roots.

Therefore, everything we know about a system’s eigenvalues and characteristic
equation roots is true for a system’s poles. This includes that they characterize a
system’s response (especially its free response) and stability.

11.2.1 Pole-Zero Plots and Stability

The complex-valued poles and zeros dominate system behavior via their values and
value-relationships. Often, we construct a pole-zero plot—a plot in the complex
plane of a system’s poles and zeros—such as that of figure 11.1.

260 Chapter 11

<(B)

=(B)

Figure 11.1. A pole-zero plot for a systemwith nine poles and four zeros. In this example,
six of the poles are complex-conjugate pairs and three are real. Three are in the right
half-plane, making the system unstable. One zero is in the right half-plane, making the
system “minimum phase.”

p. 1

Re(s)

Im(s)

Figure 11.2. Free response contributions from poles at different locations. Complex
poles contribute oscillating free responses, whereas real poles do not. Left half-plane
poles contribute stable responses that decay. Right half-plane poles contribute unstable
responses that grow. Imaginary-axis poles contribute marginal stability.

Transfer Functions 261

From our identification of poles with eigenvalues and roots of the characteristic
equation, we can recognize that each pole contributes an exponential response that
oscillates if it is complex. There are three stability contribution possibilities for each
pole ?8 :

• <(?8)< 0: a stable, decaying contribution;
• <(?8)= 0: a marginally stable, neither decaying nor growing contribution;
and

• <(?8)> 0: an unstable, growing contribution.
This is explored graphically in figure 11.2.
Of course, we must not forget that a system’s stability is spoiled with a single

unstable pole.
It can be shown that complex poles and zeros always arise as conjugate pairs. A

consequence of this is that the pole-zero plot is always symmetric about the real

axis.

11.2.2 Second-Order Systems

Second-order response is characterized by a damping ratio � and natural frequency
$= . These parameters have clear complex-plane “geometric” interpretations, as
shown in figure 11.3. Pole locations are interpreted geometrically in accordancewith
their relation to rays of constant damping from the origin and circles of constant
natural frequency, centered about the origin.

262 Chapter 11

�

$=

−�$=

$3

arccos �
�= 1

�= 0

� > 1 <(B)

=(B)

Figure 11.3. Second-order free response contributions from poles at different locations,
characterized by the damping ratio � and natural frequency $= . Constant damping
occurs along rays from the origin. Constant natural frequency occurs along arcs of
constant radius, centered at the origin.

11.3 Transfer Functions in Python LINK
TP

In Python, there are two common transfer function representations:

• SymPy symbolic expressions, which are used for symbolic
manipulation and analysis

• Control Systems Library transfer function objects (control.xferfcn.TransferFunction),
which are used for numerical simulation and analysis

We will use both representations and introduce the DySys package’s
dysys.transferfunctionsymbolic.tfs() function for convenient symbolic
transfer function creation,manipulation, and conversion to a control.xferfcn.TransferFunction
object.

https://sys.ricopic.one/tp
https://sys.ricopic.one/tp

Transfer Functions 263

11.3.1 Define a Symbolic Transfer Function

Load Python packages as follows:

import numpy as np
import sympy as sp
import dysys
import control

Consider the transfer function

�(B)= 11B + 10

02B2 + 01B + 00
,

where 18 and 08 are real-valued coefficients. We could define the transfer function
as a symbolic expression as follows:

s = sp.symbols("s", complex=True)
a0, a1, a2, b0, b1 = sp.symbols("a0, a1, a2, b0, b1")
H_sp = (b1 * s + b0) / (a2 * s**2 + a1 * s + a0)

We can also use the DySys package to create a symbolic transfer function as
follows:

H_dysys = dysys.tfs(H_sp, s)

11.3.2 Use DySys Methods

Something nice about the DySys representation created by tfs is that several
methods are available. For instance, the poles and zeros can be computed as follows:

print(H_dysys.poles())
print(H_dysys.zeros())

{-a1/(2*a2) - sqrt(-4*a0*a2 + a1**2)/(2*a2): 1, -a1/(2*a2) +
sqrt(-4*a0*a2 + a1**2)/(2*a2): 1}↩→

{-b0/b1: 1}

Note that the multiplicity of the poles and zeros are the dictionary values. The
DC gain can be computed as follows:

print(H_dysys.dc_gain())

b0/a0

264 Chapter 11

11.3.3 Convert to Control Systems Library Transfer Function

TheDySys representation can be converted to a control.xferfcn.TransferFunction
object as follows:

params = {"a0": 1, "a1": 2, "a2": 3, "b0": 4, "b1": 5}
H_control = H_dysys.to_control(params)
print(H_control)

<TransferFunction>: sys[0]
Inputs (1): ['u[0]']
Outputs (1): ['y[0]']

5 s + 4

3 s^2 + 2 s + 1

Note that the params dictionary is used to substitute the symbolic parameters
with numerical values, which is required if there are any nonnumerical parameters
remaining in the symbolic transfer function.

11.3.4 Constructing Control Systems Library Transfer Functions from Scratch

The control.xferfcn.TransferFunction object can be constructed from scratch
in two primary ways. The first way is to use the numerator and denominator
coefficients as follows:

num = [5, 4] # 5 s + 4
den = [3, 2, 1] # 3 s^2 + 2 s + 1
H_control_2 = control.tf(num, den)
print(H_control_2)

<TransferFunction>: sys[1]
Inputs (1): ['u[0]']
Outputs (1): ['y[0]']

5 s + 4

3 s^2 + 2 s + 1

The second way is to use the zero-pole-gain representation as follows:

zeros = [3, 4]
poles = [0, 1, 2]
gain = 3
H_control_3 = control.zpk(zeros, poles, gain)
print(H_control_3)

Transfer Functions 265

<TransferFunction>: sys[2]
Inputs (1): ['u[0]']
Outputs (1): ['y[0]']

3 s^2 - 21 s + 36

s^3 - 3 s^2 + 2 s

11.4 Exploring Transfer Functions in Matlab LINK
L8

Matlab includes several nice functions for working with transfer
functions. We explore some here.

The tf Command and Its Friends The tf command allows us to create LTI
transfer function objects (which we’ll abbreviate as “tf objects”) that are recognized
by lsim, step, and initial.
Consider the transfer function

�(B)= B + 1
B3 + 3B2 + 7B + 1

.

We can make a Matlab model as follows.

sys = tf([1,1],[1,3,7,1])

sys =

s + 1

s^3 + 3 s^2 + 7 s + 1

Continuous-time transfer function.

Alternatively, we could define s as a transfer function model itself.

s = tf([1,0],[1]); % tf is 1*s+0/1 = s
(s+1)/(s^3+3*s^2+7*s+1)

ans =

s + 1

s^3 + 3 s^2 + 7 s + 1

Continuous-time transfer function.

Algebraic Operations with tfS Say we have two transfer functions �(B) and
�(B) (already defined as sys). We might want to concatenate them. The idea is

https://sys.ricopic.one/l8
https://sys.ricopic.one/l8

266 Chapter 11

that we might take the output of �(B) and use that as the input to �(B). In this
case, the transfer function from the input of �(B) to the output of �(B) is just the
multiplication

�(B)�(B).
G = 1/(s+2); % or tf([1],[1,2])
G*sys

ans =

s + 1

s^4 + 5 s^3 + 13 s^2 + 15 s + 2

Continuous-time transfer function.

Note that we have seen that Matlab handles addition andmultiplication of scalars
and tfs as well as the products of tfs. (It will also handle division.)

State-Space Models to tfModels. Consider the state-space model with standard
matrices as shown below.

A = [-2,0;0,-3];
B = [1;1];
C = [1,0;1,1;0,1];
D = [0;0;1];

We can create a ssmodel as usual.
sys_ss = ss(A,B,C,D);

First, Let’s Form aTransfer Function Symbolically Weknow the transfer function
matrix is given by

�(B� −�)−1�+�.
syms S
sys_tf_s = C*inv(S*eye(size(A)) - A)*B + D

sys_tf_s =

1/(S + 2)
1/(S + 2) + 1/(S + 3)

1/(S + 3) + 1

This gave us three symbolic transfer functions in a 3× 1 matrix, the first being
that for the input to the first output, the second for the input to the second output,
etc.

Transfer Functions 267

Or We Can Convert the ssModel to a tfModel We can actually simply pass
the ssmodel to the tf function.
sys_tf = tf(sys_ss)

sys_tf =

From input to output...
1

1: -----
s + 2

2 s + 5
2: -------------

s^2 + 5 s + 6

s + 4
3: -----

s + 3

Continuous-time transfer function.

Note that the function ss2tf has a serious bug and should not be trusted.

Poles, Zeros, and Stability Let’s take a look at the poles and zeros of sys.

p_sys = pole(sys)
z_sys = zero(sys)

p_sys =

-1.4239 + 2.1305i
-1.4239 - 2.1305i
-0.1523 + 0.0000i

z_sys =

-1

Stability can be evaluated from p_sys. The system is stable because the real parts
of all poles are negative.
Let’s take a look at the pole-zero map.

figure;
pzmap(sys)

The resulting figure is shown in figure 11.4.

268 Chapter 11

−1.4 −1.2 −1 −0.8 −0.6 −0.4 −0.2

−2

2

Real Axis (seconds-1)

Im
ag
in
ar
y
A
xi
s
(s
ec
o
n
d
s-
1
)

Figure 11.4

Simulating with tfS All the simulation functions we’ve used for ss models
(lsim,step,impulse,initial) will also work for tf models. Let’s try a impulse
response on our original sys transfer function model.

t = linspace(0,15,200);
y = impulse(sys,t);

Plot.

figure
plot(t,y);
xlabel('time (s)')
ylabel('step response')

Transfer Functions 269

2 4 6 8 10 12 14

0.1

0.2

0.3

time (s)

st
ep

re
sp
o
n
se

Figure 11.5

The resulting figure is shown in figure 11.5.

11.5 ZPK Transfer Functions in Matlab LINK
EW

Consider the transfer function:

�(B)= 2B + 1
B2 + 7B + 12

= 2
B + 1/2

(B + 3)(B + 4) .

In the second equality, we have factored the polynomials and expressed them in
terms of poles ?8 and zeros I8 with terms (B − ?8) and (B − I8). Note the gain factor 2
that emerges in this form.
Both forms are useful. In the former, two polynomials in B define the transfer

function; in the latter, a list of zeros, poles, and a gain constant define the transfer
function.
In Matlab, there are two corresponding manners of defining a transfer function.

We demonstrate the first, already familiar, method using the tf command, which
takes polynomial coefficients, as follows.

H_tf = tf([2,1],[1,7,12])

https://sys.ricopic.one/ew
https://sys.ricopic.one/ew

270 Chapter 11

H_tf =

2 s + 1

s^2 + 7 s + 12

Continuous-time transfer function.

Alternatively, we can define the transfer function model with the zpk command
using the zeros, poles, and gain constant.

H_zpk = zpk([-1/2],[-3,-4],2)

H_zpk =

2 (s+0.5)

(s+3) (s+4)

Continuous-time zero/pole/gain model.

This zpkmodel will work with all the usual functions tfmodels do. However, if
you’d like to convert zpk to tf, simply use tf as follows.

tf(H_zpk)

ans =

2 s + 1

s^2 + 7 s + 12

Continuous-time transfer function.

Alternatively, we can convert a tfmodel to a zpkmodel.

zpk(H_tf)

ans =

2 (s+0.5)

(s+4) (s+3)

Continuous-time zero/pole/gain model.

Transfer Functions 271

11.6 Problems LINK
2A

Problem 11.1 LINKSCALLYWAG Use a computer to solve this problem. Consider the
transfer function

�(B)= 10(B + 3)
(B + 2)(B2 + 8B + 41) .

1. What are poles and zeros of �?
2. Comment on the stability of the system described by � (justify your

comment).
3. Construct a pole-zero plot.
4. Use a function like the Python control package function step_response()

to simulate the unit step response of the system and plot it for C ∈ [0, 3]
seconds.

Problem 11.2 LINKSWASHBUCKLING Consider a system with linear state-space model
matrices

�=

[
−1 4
0 −3

]
�=

[
1
−1

]
(11.3)

� =
[
1 0

]
� =

[
0
]
. (11.4)

1. Derive the transfer function �(B) for the system. Express it as a single ratio
in B.

2. What are the poles and zeros?
3. Compare the poles to the eigenvalues of �.
4. Draw or sketch a pole-zero plot.
5. With reference to the pole-zero plot, comment on the stability and transient

free response characteristics of the system.
6. Use the inverse Laplace transform ℒ−1 to find the system’s forced response

H(C) to step input D(C)= 9 DB(C).

Problem 11.3 LINKBORIS Consider amass-spring-damper systemwithmass<, spring
constant :, and damping coefficient � with the I/O ODE

¥H + �

<
¤H + :

<
H =

1
<
D

for input force D(C)= �((C) and output position H(C)= G<(C).
1. Find the corresponding transfer function �(B)=.(B)/*(B).

https://sys.ricopic.one/2a
https://sys.ricopic.one/2a
https://sys.ricopic.one/scallywag
https://sys.ricopic.one/swashbuckling
https://sys.ricopic.one/boris

272 Chapter 11

2. Find the natural frequency and damping ratio in terms of system parameters
<, :, and �.

3. What are poles and zeros of � in terms of system parameters <, :, and �?
4. For system parameters < = 10 kg, : = 1 · 105 N/m, and �= 500 N·s/m,

construct a pole-zero plot.
5. Comment on the stability of the system described by �. Are there any values

of system parameters <, :, and � for which the system is marginally stable
or unstable?

6. For system parameters < = 10 kg, : = 1 · 105 N/m, and �= 500 N·s/m, use
a function like the Python control package function step_response to
simulate the unit step response of the system and plot it for C ∈ [0, 0.3] s.

12 Impedance-Based Modeling LINK
F2

In this chapter, we consider impedance-based modeling.

12.1 Input Impedance and Admittance LINK
UU

We now introduce a generalization of the familiar impedance and
admittance of electrical circuit analysis, in which system behavior
can be expressed algebraically instead of differentially. We begin with generalized
input impedance.

source system with .(B) and /(B)Vin

ℱin

Figure 12.1. System impedance.

Consider a systemwith a source, as shown in figure 12.1. The source can be either
an across- or a through-variable source. The ideal source specifies eitherVin or ℱin,
and the other variable depends on the system.
Let a source variables have Laplace transformsVin(B) and ℱin(B). We define the

system’s input impedance / and input admittance . to be the Laplace-domain
ratios

/(B)= Vin(B)
ℱin(B)

and .(B)= ℱin(B)
Vin(B)

.

Clearly,

.(B)= 1
/(B) .

https://sys.ricopic.one/f2
https://sys.ricopic.one/f2
https://sys.ricopic.one/uu
https://sys.ricopic.one/uu

274 Chapter 12

Both / and . can be considered transfer functions: for a through-variable source
ℱin, the impedance / is the transfer function to across-variableVin; for an across-
variable sourceVin, the admittance . is the transfer function to through-variable
ℱin. Often, however, we use the more common impedance / to characterize systems
with either type of source.
Note that / and . are system properties, not properties of the source. An

impedance or admittance can characterize a system of interconnected elements, or
a system of a single element, as the next section explores.

12.1.1 Impedance of Ideal Passive Elements

The impedance and admittance of a single, ideal, one-port element is defined from
the Laplace transform of its elemental equation.

Generalized capacitors A generalized capacitor has elemental equation

3V�(C)
3C

=
1
�
ℱ�(C),

the Laplace transform of which is

BV�(B)=
1
�
ℱ�(B),

which can be solved for impedance /� =V�/ℱ� and admittance .� =ℱ�/V� :

/�(B)=
1
�B

and .�(B)=�B.

Generalized inductors A generalized inductor has elemental equation

3ℱ!(C)
3C

=
1
!
ℱ!(C),

the Laplace transform of which is

Bℱ!(B)=
1
!
V!(B),

which can be solved for impedance /! =V!/ℱ! and admittance .! =ℱ!/V!:

/!(B)= !B and .�(B)=
1
!B
.

Generalized resistors A generalized resistor has elemental equation

V'(C)=ℱ'(C)',
the Laplace transform of which is

V'(B)=ℱ'(B)',

Impedance-Based Modeling 275

which can be solved for impedance /' =V'/ℱ' and admittance .' =ℱ'/V':

/'(B)=' and .'(B)=
1
'
.

For a summary of the impedance of one-port elements, see ??.

12.1.2 Impedance of Interconnected Elements

As with electrical circuits, impedances of linear graphs of interconnected elements
can be combined in two primary ways: in parallel or in series.
Elements sharing the same through-variable are said to be in series connection.

elements connected in series /1 /2
· · · have equivalent impedance /

and admittance .:

/(B)=
#∑
8=1

/8(B) and .(B)= 1

/
#∑
8=1

1/.8(B)

Conversely, elements sharing the same across-variable are said to be in parallel

connection. # elements connected in parallel
· · ·

have equivalent impedance

/ and admittance .:

/(B)= 1

/
#∑
8=1

1//8(B) and .(B)=
#∑
8=1

.8(B).

Example 12.1

For the circuit shown, find the input impedance.

+
−+B

'1
�

! '2

The input impedance is the equivalent impedance of the combination of parallel
and series connections:

/(B)=/'1 +/� + /'2/!

/'2 +/!
,

where
/'1 ='1, /'2 ='2, /� = 1/(�B), and /! = !B.

276 Chapter 12

12.2 Impedance with Two-Port Elements LINK
2U

The two types of energy transducing elements, transformers and
gyrators, “reflect” or “transmit” impedance through themselves, such
that they are “felt” on the other side.
For a transformer, the elemental equations are

V2(C)=V1(C)/)� and ℱ2(C)=−)�ℱ1(C),
the Laplace transforms of which are

V2(B)=V1(B)/)� and ℱ2(B)=−)�ℱ1(B).

1 2

/3

If, on the 2-side, the input impedance is /3, as in ??, the equations of section 12.2
are subject to the continuity and compatibility equations

V2 =V3 and ℱ2 =−ℱ3.

Substituting these into section 12.2 and solving forV1 and ℱ1,

V1 =)�V3 and ℱ1 =ℱ3/)�.
The elemental equation for element 3 isV3 =ℱ3/3, which can be substituted into
the through-variable equation to yield

ℱ1 =
1

/3)�
V3.

Working our way back fromV3 toV1, we apply the compatibility equationV2 =V3

and the elemental equationV2 =V1/)�, as follows:

ℱ1 =
1

/3)�
V2

=
1

/3)�2
V1.

Solving for the effective input impedance /1,

/1 ≡
V1(B)
ℱ1(B)

=)�2/3.

https://sys.ricopic.one/2u
https://sys.ricopic.one/2u

Impedance-Based Modeling 277

1 2

/3

For a gyrator with gyrator modulus �., in the configuration shown in ??, a
similar derivation yields the effective input impedance /1,

/1 =�.
2//3.

Example 12.2

Draw a linear graph of the fluid system. What is the input impedance for an
input force to the piston?

The linear graph is as follows.

Using a one-liner approach:

/1 =�.
2/

(
'1 +

('2 + �B)/(�B)
'2 + �B + 1/(�B)

)
=

1
�2

· ��B2 +�'2B + 1
'1�B2 + ('1'2� + �)B +'1 +'2

.

278 Chapter 12

12.3 Transfer Functions via Impedance LINK
58

Now the true power of impedance-basedmodeling is revealed: we can
skip a time-domain model (e.g. state-space or io differential equation)
and derive a transfer-function model, directly! Before we do, however, let’s be sure
to recall that a transfer-function model concerns itself with the forced response of a
system, ignoring the free response. If we care to consider the free response, we can
convert the transfer function model to an io differential equation and solve it.
There are two primaryways impedance-basedmodeling is used to derive transfer

functions. The first and most general is described, here. The second is a shortcut
most useful for relatively simple systems; it is described in ??.
In what follows, it is important to recognize that, in the Laplace-domain, every

elemental equation is just1

V =ℱ /,
where the across-variable, through-variable, and impedance are all element-specific.
This algorithm is very similar to that for state-space models from linear graph

models, presented in ??. In the following, we consider a connected graph with �
branches, of which (are sources (split between through-variable sources () and
across (�). There are 2�− (unknown across- and through-variables, so that’s how
many equations we need. We have �− (elemental equations and for the rest we
will write continuity and compatibility equations. # is the number of nodes.

1. Derive 2�− (independent Laplace-domain, algebraic equations fromLaplace-
domain elemental, continuity, and compatibility equations.

1. Draw a normal tree.
2. Write a Laplace-domain elemental equation for each passive element.2

3. Write a continuity equation for each passive branch by drawing a
contour intersecting that and no other branch.3

4. Write a compatibility equation for each passive link by temporarily
“including” it in the tree and finding the compatibility equation for the
resulting loop.4

2. Solve the algebraic system of 2� equations and 2� unknowns for outputs in
terms of inputs, only. Sometimes, solving for all unknowns via the usual
methods is easier than trying to cherry-pick the desired outputs.

1. In electronics, this is sometimes called “generalized Ohm’s law.”

2. There will be �− (elemental equations.
3. There will be # − 1− (� independent continuity equations.
4. There will be �−# + 1− () independent compatibility equations.

https://sys.ricopic.one/58
https://sys.ricopic.one/58

Impedance-Based Modeling 279

3. The solution for each output .8 depends on zero or more inputs* 9 . To solve
for the transfer function .8/* 9 , set*: = 0 for all : ≠ 9, then divide both sides
of the equation by* 9 .

Example 12.3

For the schematic of a fire hose connected to a fire truck’s reservoir � via pump
input %B , use impedance methods to find the transfer function from %B to the
velocity of the spray. Assume the nozzle’s cross-sectional area is �.

Ps

C

L, R

TODO

12.4 Impedance Modeling Example in Matlab

Example 12.4 LINK
GH

Consider the linear graph of an electronic system, below. Use
impedance methods to derive the transfer functions from inputs
+(and �(to outputs E�2 and 8'1 .

Figure 12.2. Linear graph.

https://sys.ricopic.one/gh
https://sys.ricopic.one/gh

280 Chapter 12

The normal tree is shown, below, along with contours to be used for continuity
equations.

Figure 12.3. Normal tree.

We switch over to Matlab for the remainder of the solution.
Let’s define the required symbolic variables.

syms s VS IS ...
vC1 iC1 vC2 iC2 vL1 iL1 vL2 iL2 ...
vR1 iR1 vR2 iR2 vR3 iR3 ...
zC1 zC2 zL1 zL2 zR1 zR2 zR3 ...
C1 C2 L1 L2 R1 R2 R3

We also specify the unknown variables (two for each passive element), output
variables, and input variables.

unknowns = [...
vC1 iC1 vC2 iC2 vL1 iL1 vL2 iL2 ...
vR1 iR1 vR2 iR2 vR3 iR3 ...

];
out_i = [3,10]; % output indices
in = [VS;IS]; % input variables

Now let’s define our elemental, continuity, and compatibility equations.

elemental = [...
vC1 == iC1*zC1,...
vC2 == iC2*zC2,...
vL1 == iL1*zL1,...
vL2 == iL2*zL2,...
vR1 == iR1*zR1,...

Impedance-Based Modeling 281

vR2 == iR2*zR2,...
vR3 == iR3*zR3 ...

];
continuity = [...

iC1 == iL1 - IS - iR2,...
iR1 == iL1,...
iC2 == IS + iR2,...
iR3 == IS + iR2 ...

];
compatibility = [

vL1 == -vR1 + VS - vC1,...
vL2 == vC2,...
vR2 == vC1 - vC2 - vR3...

];

These form a linear system of 2× 7= 14 unknowns and 14 equations. Such
systems can be defined inmatrix form as M*unknowns == b, where M are the coef-
ficients of the unknowns, unknowns is the vector of unknowns, and b is the vector
of terms that include the inputs. Matlab has the function equationsToMatrix
for specifying the matrix form from a list of equations.

[M,b] = equationsToMatrix(...
[elemental,continuity,compatibility],... % eq's
unknowns... % unknown variables

);
disp('first 10 columns of M:') % to fit on screen
disp(M(:,1:10))
disp('b transposed:') % for pretty
disp(b.')

first 10 columns of M:
[1, -zC1, 0, 0, 0, 0, 0, 0, 0, 0]
[0, 0, 1, -zC2, 0, 0, 0, 0, 0, 0]
[0, 0, 0, 0, 1, -zL1, 0, 0, 0, 0]
[0, 0, 0, 0, 0, 0, 1, -zL2, 0, 0]
[0, 0, 0, 0, 0, 0, 0, 0, 1, -zR1]
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
[0, 1, 0, 0, 0, -1, 0, 0, 0, 0]
[0, 0, 0, 0, 0, -1, 0, 0, 0, 1]
[0, 0, 0, 1, 0, 0, 0, 0, 0, 0]
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
[1, 0, 0, 0, 1, 0, 0, 0, 1, 0]
[0, 0, -1, 0, 0, 0, 1, 0, 0, 0]
[-1, 0, 1, 0, 0, 0, 0, 0, 0, 0]

b transposed:

282 Chapter 12

[0, 0, 0, 0, 0, 0, 0, -IS, 0, IS, IS, VS, 0, 0]

Furthermore, Matlab has the function linsolve for solving for the unknowns.

sol_z = linsolve(M,b);

This solution sol_z includes impedances. We would like to substitute for the
actual impedance values, defined as follows in struct form.

impedances.zC1 = 1/(C1*s);
impedances.zC2 = 1/(C2*s);
impedances.zL1 = L1*s;
impedances.zL2 = L2*s;
impedances.zR1 = R1;
impedances.zR2 = R2;
impedances.zR3 = R3;

Now we can substitute impedances with subs, which gives us a solution in
terms of s.

sol = simplify(...
subs(...

sol_z,...
fieldnames(impedances),...
struct2cell(impedances)...

)...
);
[n,d]=numden(sol);
sol_nd = collect([n,d],s);

Finally, we can compute the transfer function matrix �(B) by using the solu-
tions for our outputs and substituting 1 for the input of interest and 0 for the
others (this code generalizes to more than two inputs).

for input_i = 1:length(in) % each input
for output_i = 1:length(out_i) % each output

output_index = out_i(output_i); % idx of ops var
input_var = in(input_i); % input variable
other_inputs = setdiff(in,[input_var]); % sneaky
num = sol_nd(output_index,1); % w/all ip's
den = sol_nd(output_index,2); % w/all ip's
num_tf = subs(... % eliminate other inputs

num,...
[input_var,other_inputs],...
[1,zeros(size(other_inputs))]...

);
den_tf = subs(... % eliminate other inputs

den,...

Impedance-Based Modeling 283

[input_var,other_inputs],...
[1,zeros(size(other_inputs))]...

);
H(input_i,output_i) = ... % collect s and divide
collect(num_tf,s)/collect(den_tf,s);

end
end
pretty(H(2,1)) % display H_21

2
(C1 L1 R2 s + C1 R1 R2 s + R2)/((C1 C2 L1 R2 + C1 C2 L1 R3)

3
s + (C1 L1 + C2 L1 + C1 C2 R1 R2 + C1 C2 R1 R3)

2
s + (C1 R1 + C2 R1 + C2 R2 + C2 R3) s + 1)

12.5 Norton and Thévenin Theorems LINK
S1

The following remarkable theorem has been proven.

Theorem 12.1: Generalized Thévenin’s theorem

iven a linear network of across-variable sources, through-variable
sources, and impedances, the behavior at the network’s output
nodes can be reproduced exactly by a single across-variable source
V4 in series with an impedance /4 .

The equivalent linear network has two quantities to determine:V4 and /4 .

12.5.0.1 Determining `e The equivalent impedance /4 of a network is the
impedance between the output nodes with all inputs set to zero. Setting an across-
variable source to zero means the across-variable on both its terminals are equal,
which is equivalent to treating them as the same node. Setting a through-variable
source to zero means the through-variable through it is zero, which is equivalent to
treating its nodes as disconnected.

12.5.0.2 DeterminingVe The equivalent across-variable sourceV4 is the across-
variable at the output nodes of the network when they are left open (disconnected
from a load). Determining this value typically requires some analysis with the
elemental, continuity, and compatibility equations (preferably via impedance
methods).

https://sys.ricopic.one/s1
https://sys.ricopic.one/s1

284 Chapter 12

12.5.1 Norton’s Theorem

Similarly, the following remarkable theorem has been proven.

Theorem 12.2: Generalized Norton’s theorem

iven a linear network of across-variable sources, through-variable sources, and
impedances, the behavior at the network’s output nodes can be reproduced
exactly by a single through-variable source ℱ4 in parallel with an impedance /4 .

The equivalent network has two quantities to determine: ℱ4 and /4 . The equiv-
alent impedance /4 is identical to that of Thévenin’s theorem, which leaves the
equivalent through-variable source ℱ4 to be determined.

12.5.1.1 Determining Fe The equivalent through-variable source ℱ4 is the
through-variable through the output terminals of the networkwhen they are shorted
(collapsed to a single node). Determining this value typically requires some analysis
with elemental, continuity, and compatibility equations (preferably via impedance
methods).

12.5.2 Converting Between Thévenin and Norton Equivalents

There is an equivalence between the two equivalent network models that allows
one to convert from one to another with ease. The equivalent impedance /4 is
identical in each and provides the following equation for converting between the
two representations:

V4 =/4ℱ4 . (12.1)

Example 12.5

For the circuit shown, find a Thévenin and a Norton equivalent.

Figure 12.4. Circuit.

Impedance-Based Modeling 285

The Thévenin equivalent is shown. Now to find /4 and V4 . Setting +B = 0, '1

and '2 are in parallel, combining to give

/4 =
'1'2

'1 +'2
.

Figure 12.5. Thévenin equivalent.

Now to find Eout. It’s a voltage divider:

V4 = Eout =
'2

'1 +'2
+B .

The Norton equivalent is shown. We know /4 from the Thévenin equivalent,
which also yields

ℱ4 =V4//4 .

Figure 12.6. Norton equivalent.

286 Chapter 12

12.6 The Divider Method

Vin

/1

/2

Figure 12.7. the two-element across-variable divider.

LINK
W2

In Electronics, we developed the useful voltage divider formula
for quickly analyzing how voltage divides among series electronic
impedances. This can be considered a special case of a more general across-variable
divider equation for any elements described by an impedance. After developing
the across-variable divider, we also introduce the through-variable divider, which
divides an input through-variable among parallel elements.

12.6.1 Across-Variable Dividers

First, we develop the solution for the two-element across-variable divider shown
in figure 12.7. We choose the across-variable across /2 as the output. The analysis
follows the impedance method of ??, solving forV2.

1. Derive four independent equations.

1. The normal tree is chosen to consist ofVin and /2.
2. The elemental equations are

/1

/2

V1 =ℱ1/1

V2 =ℱ2/2

3. The continuity equation is ℱ2 =ℱ1.
4. The compatibility equation isV1 =Vin −V2.

2. Solve for the outputV2. From the elemental equation for /2,

V2 =ℱ∞/2

=
V1

/1
/2

=
/2

/1
(Vin −V2) ⇒

V2 =
/2

/1 +/2
Vin.

https://sys.ricopic.one/w2
https://sys.ricopic.one/w2

Impedance-Based Modeling 287

A similar analysis can be conducted for = impedance elements.

Equation 12.2 general across-variable divider

12.6.2 Through-Variable Dividers

By a similar process, we can analyze a network that divides a through-variable
into = parallel impedance elements. For the output through-variable through /: in
parallel with = impedance elements with input through-variable $\mathcal{

12.6.3 Transfer Functions Using Dividers

An excellent shortcut to deriving a transfer function is to use the across- and through-
variable divider rules instead of solving the system of algebraic equations, as in ??.
An algorithm for this process is as follows.

1. Identify the element associated with an output variable .8 . Call it the output
element.

2. Identify the source associated with an input variable* 9 . Set all other sources
to zero.

3. Transform the network to be an across- or through-variable divider that
includes the “bare” (uncombined) output element’s output variable.5

1. If necessary, form equivalent impedances of portions of the network,
being sure to leave the output element’s output variable alone.

2. If necessary, transform the source à la Norton or Thévenin.

4. Apply the across- or through-variable divider equation.
5. If necessary, use the elemental equation of the output element to trade output

across- and through-variables.
6. If necessary, use the source transformation equation of the input to trade

input across- and through-variables.
7. Divide both sides by the input variable.

It turns out that, despite its many “if necessary” clauses, very often this “shortcut”
is easier than the method of ?? for low-order systems if only a few transfer functions
are of interest.

5. In other words, if the across-variable of the output element is the output, do not combine it in series; if
the through-variable is the output, do not combine it in parallel.

288 Chapter 12

Example 12.6

Given the circuit shown with voltage source +B and output E!,

1. what is the transfer function
+!

+B
?

2. Without transforming the source, find the transfer function
�!

+B
.

3. Transforming the source, find
�!

+B
.

+
−+B

' 8'

�

8�

!

8!

1. We’ll use impedance methods, but with a voltage divider. The inductor is
the output element, but we can combine the parallel capacitor and inductor
without losing the output variable+!. This leaves us with a straightforward
voltage divider! We can do this in one line:

+! =

/!/�
/!+/�

/' + /!/�
/!+/�

+B ⇒

+!

+B
=

/!/�

/'/! +/'/� +/!/�

=
!/�

'!B +'/(�B) + !/�

=
!B

'!�B2 + !B +' .

2. If we use the previous result and the inductor impedance (elemental
equation),

�!/!

+B
=

!B

'!�B2 + !B +' ⇒

�!

+B
=

1
'!�B2 + !B +'

Impedance-Based Modeling 289

3. Transforming the source puts ', �, and ! in parallelwith the new source �B ,
which is a straightforward through-variable divider:

�! =
1//!

1//! + 1//� + 1//'
�B ⇒

�!

�B
=

1
1+ !�B2 + !B/'

=
'

'!�B2 + !B +' .

Trade �B for +B via the Norton/Thévenin transformation:

�!

+B/'
=

'

'!�B2 + !B +' ⇒

�!

+B
=

1
'!�B2 + !B +' ,

which is the same result as in (b).

290 Chapter 12

12.7 Problems LINK
V3

Problem 12.1 LINKTILE Use the linear graph below of a thermal system to (a) derive
the transfer function)'2(B)/)B(B), where)B is the input temperature and)'2 is the
temperature across the thermal resistor '2. Use impedance methods. And (b) derive
the input impedance the input)B drives.

)B

'1

'2

�

Figure 12.8. A linear graph for problem 12.1.

Problem 12.2 LINKGRANITE Use the linear graph below of a fluid system to (a) derive
the transfer function %�(B)/%((B), where %(is the input pressure and %� is the
pressure across the fluid capacitance �. Use impedance methods and a divider rule

is highly recommended. (Simplify the transfer function.) And (b) derive the input
impedance the input %(drives. (Don’t simplify the expression.)

%(

' �

�

Figure 12.9. A linear graph for problem 12.2.

Problem 12.3 LINKGRANTED Use the linear graph below of an electronic system to
derive the transfer function �'1(B)/+((B), where +(is the input voltage and �'1

is the current through the resistor '1. (Simplify the transfer function.) Use an
impedance method.Hint: a divider method is recommended; without it, use of a computer

is recommended.

https://sys.ricopic.one/v3
https://sys.ricopic.one/v3
https://sys.ricopic.one/tile
https://sys.ricopic.one/granite
https://sys.ricopic.one/granted

Impedance-Based Modeling 291

+(

'1

�1

'2

�2

Figure 12.10. A linear graph for problem 12.3.

Problem 12.4 LINKCONCRETE Use the linear graph of a fluid system in ?? to derive
the transfer function &�(B)/%((B), where %(is the input pressure and &� is the
flowrate through the fluid capacitance �. Use impedance methods; a divider rule is
recommended but not required. Identify all impedances but do not substitute them
into the transfer function.

%(

'1 �1

'2 �2

�

Figure 12.11. A fluid system linear graph.

Problem 12.5 LINKRHINE Use the linear graph of a fluid system in figure 12.12 to
derive the transfer functions &�(B)/%((B) and &'3(B)/%((B), where %(is the input
pressure, &'3 is the flowrate through a valve with resistance '3, and &� is the
flowrate through a tank with fluid capacitance �. Use impedance methods; a divider
rule is not required. Identify all impedances and substitute them into the transfer
functions, but you are not required to simplify these expression.

https://sys.ricopic.one/concrete
https://sys.ricopic.one/rhine

292 Chapter 12

%(

'1 �1

'2 �2

�

'3

Figure 12.12. A fluid system linear graph.

Problem 12.6 LINKTABLEAU Consider an accelerometer that has transfer function

�(B) ≡ +8(B)
�(B) =

 � $2
=�

B2 + 2��$=� B +$2
=�

,

where

• � is the input acceleration in m/s2,
• +8 is the output voltage in V,
• � = 0.1 V/(m/s2) is the gain,
• $=� = 3000 rad/s is the natural frequency, and
• �� = 0.2 is the damping ratio.
Perform a frequency domain analysis as follows.

1. Generate a Bode plot of �(B).
2. At DC ($= 0 rad/s), compute the magnitude and phase of the frequency

response function of the accelerometer.

Suppose there is a sinusoidal systematic noise signal at the input, with amplitude
0noise = 1 m/s2 and frequency $noise = 2900 rad/s.6

3. Assuming there is only noise input, at the noise frequency $noise, compute
the amplitude and phase of the voltage +8 at the output of the accelerometer.
Why is the amplitude higher than it would have been at DC (use your Bode
plot from item 1. to justify your answer).

To mitigate the systematic noise, we add a filter with transfer function �(B) to
the output of the accelerometer, as shown in figure 12.13.
By definition,

�(B) ≡ +>(B)
+8(B)

.

6. Assume the input phase is zero.

https://sys.ricopic.one/tableau

Impedance-Based Modeling 293

acceleration
a(t), A(s)

G(s)

accelerometer

H(s)

filter

output voltage
vo(t), Vo(s)

voltage

vi(t), Vi(s)

Figure 12.13. Accelerometer and filter block diagram.

Assume the filter and accelerometer do not dynamically load each other. The filter
circuit diagram is shown in figure 12.14.

4. Draw a linear graph model of the filter circuit.
5. Use impedance methods to derive the transfer function �(B) in terms of the

circuit element parameters ', !, and �.
6. Find the filter’s natural frequency $=� and damping ratio �� .7

7. Let � = 0.001 F. Design the filter by choosing ' and ! such that

�� = 1 and $=� = 1000 rad/s.

8. Find the transfer function
+>(B)
�(B)

with all parameters substituted. Simplify.
9. Generate a Bode plot for +>(B)/�(B).
10. Using the Bode plot of item 9., explain why we should expect the output

from the systematic noise at $noise to be improved.
11. From the transfer function+>(B)/�(B), at the noise frequency$noise, compute

the amplitude and phase of the output voltage +> .
12. Compare the result from item 11. to the unfiltered voltage in item 3. by

finding the ratio of the filtered amplitude over then unfiltered amplitude.

Vi

L

C R Vo

Figure 12.14. Filter circuit.

7. Be cautious to make the denominator have the proper standard form B2 + 2��$=� B +$2
=�
.

294 Chapter 12

13. How could you augment the filter design to further reduce the systematic
noise?

Problem 12.7 LINKGYPSUM Respond to the following questions and imperatives with
a sentence or two, equation, and/or a sketch.

1. Comment on the stability and transient response characteristics of a systemwith
eigenvalues

−2,−5,−8+ 93,−8− 93.
2. Consider an LTI system that, given input D1, outputs H1, and given input D2,

outputs H2. If the input is D3 = 5D1 − 6D2, what is the output H3?
3. Consider a second-order system with natural frequency $= = 2 rad/s and

damping ratio �= 0.5. What is the free response for initial condition H(0)= 1?
4. Two thermal elementswith impedances /1 and /2 have a temperature source

)(applied across them in series. What is the transfer function from)(to the
heat &2 through /2?

5. Draw a linear graph of a pump (pressure source) flowing water through a
long pipe into the bottom of a tank, which has a valve at its bottom from
which the water flows.

https://sys.ricopic.one/gypsum

13 Frequency Response LINK
MR

In this chapter, we consider the frequency response of systems.

13.1 Frequency and Impulse Response LINK
3X

This lecture proceeds in three parts. First, the Fourier transform is
used to derive the frequency response function. Second, this is used to
derive the frequency response. Third, the frequency response for an impulse input is
explored.

13.1.1 Frequency Response Functions

Consider a dynamic system described by the input-output differential equation—with
variable H representing the output, dependent variable time C, variable D representing
the input, constant coefficients 08 , 1 9 , order =, and < ≤ = for = ∈N0—as:

8
3=H

3C=
+ 0=−1

3=−1H

3C=−1
+ · · · + 01

3H

3C
+ 00H =

1<
3<D

3C<
+ 1<−1

3<−1D

3C<−1
+ · · · + 11

3D

3C
+ 10D.

https://sys.ricopic.one/mr
https://sys.ricopic.one/mr
https://sys.ricopic.one/3x
https://sys.ricopic.one/3x

296 Chapter 13

The Fourier transform ℱ of section 13.1.1 yields something interesting (assuming
zero initial conditions):

8ℱ
(
3=H

3C=
+ 0=−1

3=−1H

3C=−1
+ · · · + 01

3H

3C
+ 00H

)
=

ℱ
(
1<
3<D

3C<
+ 1<−1

3<−1D

3C<−1
+ · · · + 11

3D

3C
+ 10D

)
⇒

ℱ
(
3=H

3C=

)
+ 0=−1ℱ

(
3=−1H

3C=−1

)
+ · · · + 01ℱ

(
3H

3C

)
+ 00ℱ (H)=

1<ℱ
(
3<D

3C<

)
+ 1<−1ℱ

(
3<−1D

3C<−1

)
+ · · · + 11ℱ

(
3D

3C

)
+ 10ℱ (D) ⇒

(9$)=. + 0=−1(9$)=−1. + · · · + 01(9$). + 00. =

1<(9$)<* + 1<−1(9$)<−1* + · · · + 11(9$)* + 10*.

Solving for .,

. =
1<(9$)< + 1<−1(9$)<−1 + · · · + 11(9$) + 10

(9$)= + 0=−1(9$)=−1 + · · · + 01(9$) + 00
*.

The inverse Fourier transform ℱ −1 of . is the forced response. However, this is not
our primary concern; rather, we are interested to solve for the frequency response
function �(9$) as the ratio of the output transform . to the input transform* , i.e.1

�(9$) ≡ .($)
*($) (13.1)

=
1<(9$)< + 1<−1(9$)<−1 + · · · + 11(9$) + 10

(9$)= + 0=−1(9$)=−1 + · · · + 01(9$) + 00
. (13.2)

Note that a frequency response function can be converted to a transfer function
via the substitution 9$ ↦→ B and, conversely, a transfer function can be converted to
a frequency response function2 via the substitution B ↦→ 9$, as in

�(9$)=�(B)|B→9$.

It is often easiest to first derive a transfer function—using any of the methods
described, previously—then convert this to a frequency response function.

1. It is traditional to use the non-standard, single-sided Fourier transform for the frequency response
function for �(9$). The motivation is that it then pairs well with the (single-sided) Laplace transform’s
transfer function.

2. A caveat is that �(9$)=�(B)|B ↦→9$ only holds if the corresponding single-sided Fourier transform
exists.

Frequency Response 297

13.1.2 Frequency Response

From above, we can solve for the output response H from the frequency response
function by taking the inverse Fourier transform:

H(C)=ℱ −1.($).
From the definition of the frequency response function equation (13.1),

H(C)=ℱ −1(�(9$)*($)).
The convolution theorem states that, for two functions of time ℎ and D,

ℱ (ℎ ∗ D)=ℱ (ℎ)ℱ (D) (13.3)

=�(9$)*($), (13.4)

where the convolution operator ∗ is defined by

(ℎ ∗ D)(C) ≡
ˆ ∞

−∞
ℎ(�)D(C − �) 3�. (13.5)

Therefore,

H(C)=ℱ −1(�(9$)*($)) (13.6)

= (ℎ ∗ D)(C) (from (13.4))

=

ˆ ∞

−∞
ℎ(�)D(C − �) 3�. (from (13.5))

This is the frequency response in terms of all time-domain functions.

13.1.3 Impulse Response

The frequency response result includes an interesting object: ℎ(C). What is the
physical significance of ℎ, other than its definition, as the inverse Fourier transform
of �(9$)?
Consider the singularity input D(C)= �(C), an impulse. The frequency response is

H(C)=
ˆ ∞

−∞
ℎ(�)�(C − �) 3�.

The so-called sifting property of � yields

H(C)= ℎ(C).
That is, ℎ is the impulse response.
A very interesting aspect of this result is that

�(9$)=ℱ (ℎ).
That is, the Fourier transform of the impulse response is the frequency response
function. Away to estimate, viameasurement, the frequency response function (and

298 Chapter 13

transfer function) of a system is to input an impulse, measure and fit the response,
then Fourier transform it. Of course, putting in an actual impulse and fitting the
response, perfectly are impossible; however, estimates using approximations remain
useful.
It is worth noting that frequency response/transfer function estimation is a

significant topic of study, and many techniques exist. Another method is described
in ??.

Example 13.1

Estimate the frequency response function �(9$) of a system from impulse
response ℎ(C) “data”. (We’ll generate this data ourselves, simulating a measured
impulse response.) We will not attempt to find the functional form of �(9$), just
its “numerical” form, i.e. we’ll plot our estimate of the spectrum.

Note that if we wanted to find a functional estimate of �(9$), it would behoove
us to use Matlab’s System Identification Toolbox.

Generate Impulse Response Data We need a system to simulate to get this
(supposedly “measured”) data. Let’s define a transfer function

�(B)= B + 20
B2 + 4B + 20

.

sys = tf([1,20],[1,4,20])

sys =

s + 20

s^2 + 4 s + 20

Continuous-time transfer function.

What are the poles?

poles = pole(sys)

poles =

-2.0000 + 4.0000i
-2.0000 - 4.0000i

This corresponds to a damped oscillator with natural frequency as follows.

abs(poles(1))

https://www.mathworks.com/products/sysid.html

Frequency Response 299

ans =

4.4721

Now let’s find the impulse response.

fs = 1000; % Hz .. sampling frequency
N = 2^12;
t_a = 0:1/fs:(N-1)/fs;
h_a = impulse(sys,t_a);

To make this seem a little more realistic as a “measurement,” we should add
some noise.

noise = 0.01*randn(N,1);
h_noisy = h_a + noise;

Plot the impulse response.

figure
plot(...

t_a,h_noisy, ...
'linewidth',1.5 ...

)
xlabel('time (s)')
ylabel('impulse response')

0.5 1 1.5 2 2.5 3 3.5 4 4.5

−1

1

2

3

time (s)

im
p
u
ls
e
re
sp
o
n
se

Discrete Fourier Transform The discrete Fourier transform will give us an
estimate of the frequency spectrum of the system; that is, a numerical version of
�(9$).

300 Chapter 13

H = fft(h_noisy);

Compute the one-sided magnitude spectrum.

H_mag = abs(H/fs); % note the scaling
H_mag = H_mag(1:N/2+1); % first half, only

Compute the one-sided phase spectrum.

H_pha = angle(H); % note the scaling
H_pha = H_pha(1:N/2+1); % first half, only

Now the corresponding frequencies.

f = fs*(0:(N/2))/N;

Plot the Frequency Response Function We like to use a logarithmic scale, at
least in frequency, for the spectrum plots.

figure
semilogx(...
2*pi*f,H_mag, ...
'linewidth',1.5 ...

)
xlabel('frequency (rad/s)')
ylabel('|H(j\omega)|')

101 102 103 104

0.5

1

frequency (rad/s)

|H
(j
$
)|

Frequency Response 301

figure
semilogx(...

2*pi*f,180/pi*H_pha, ...
'linewidth',1.5 ...

)
xlabel('frequency (rad/s)')
ylabel('\angle H(j\omega) (deg)')

101 102 103 104

−200

−100

100

200

frequency (rad/s)∠
H
(j
$
)
(d
eg
)

When themagnitude |�(9$)| is small, the signal-to-noise ratio is so low that the
phase estimates are dismal. This can be mitigated by increasing sample-size and
using more advanced techniques for estimating �(9$), such as those available
in Matlab’s System Identification Toolbox.

13.2 Sinusoidal Input, Frequency Response LINK
AN

In this lecture, we explore the relationship—which turns out to be
pretty chummy—between a system’s frequency response function
�(9$) and its sinusoidal forced response.
Let’s build from the frequency response function �(9$) definition:

H(C)=ℱ −1.($) (13.7)

=ℱ −1(�(9$)*($)). (13.8)

We take the input to be sinusoidal, with amplitude � ∈R, angular frequency $0,
and phase #:

D(C)=� cos($0C +#).

https://sys.ricopic.one/an
https://sys.ricopic.one/an

302 Chapter 13

The Fourier transform of the input,*($), can be constructed via transform identities
from ??. This takes a little finagling. Let

?(C)=�@(C), (13.9)

@(C)= A(C − C0), and (13.10)

A(C)= cos $0C , where (13.11)

C0 =−#/$0. (13.12)

The corresponding Fourier transforms, from ??, are

%($)=�&($), (13.13)

&($)= 4−9$C0'($), and (13.14)

'($)=��($−$0) +��($+$0). (13.15)

Putting these together,

*($)=��
(
4 9#$/$0�($−$0) + 4 9#$/$0�($+$0)

)
(13.16)

=��
(
4 9#�($−$0) + 4−9#�($+$0)

)
. (because �s)

And now we are ready to substitute into equation (13.8); also applying the
“linearity” property of the Fourier transform:

H(C)=��
(
4 9#ℱ −1(�(9$)�($−$0)) + 4−9#ℱ −1(�(9$)�($+$0))

)
.

The definition of the inverse Fourier transform gives

3H(C)= �

2

(
4 9#

ˆ ∞

−∞
4 9$C�(9$)�($−$0)3$+

+ 4−9#
ˆ ∞

−∞
4 9$C�(9$)�($+$0)3$

)
.

Recognizing that � is an even distribution (�(C)= �(−C)) and applying the sifting
property of � allows us to evaluate each integral:

H(C)= �

2

(
4 9#4 9$0C�(9$0) + 4−9#4−9$0C�(−9$0)

)
.

Writing � in polar form,

H(C)= �

2

(
4 9($0C+#) |�(9$0)| 4 9∠�(9$0) +

+ 4−9($0C+#) |�(−9$0)|4 9∠�(−9$0)
)
. (13.17)

Frequency Response 303

The Fourier transform is conjugate symmetric—that is, �(−$)= �∗($)—which
allows us to further simply:

H(C)= �|�(9$0)|
2

(
4 9($0C+#)4 9∠�(9$0) + 4−9($0C+#)4−9∠�(9$0)

)
(13.18)

=�|�(9$0)|
4 9($0C+#+∠�(9$0)) + 4−9($0C+#+∠�(9$0))

2
. (13.19)

Finally, Euler’s formula yields something that deserves a box. For input � cos($0C +
#) to system �(9$), the forced response is

H(C)=�|�(9$0)| cos($0C +#+ ∠�(9$0)). (13.20)

This is a remarkable result. For an input sinusoid, a linear system has a forced
response that

• is also a sinusoid,
• is at the same frequency as the input,
• differs only in amplitude and phase,
• differs in amplitude by a factor of |�(9$)|, and
• differs in phase by a shift of ∠�(9$).
Now we see one of the key facets of the frequency response function: it governs

how a sinusoid transforms through a system. And just think how powerful it will
be once we combine it with the powerful principle of superposition and the mighty
Fourier series representation of a function—as a “superposition” of sinusoids!

13.3 Bode Plots LINK
PU

Given ??, we are often most-interested in the magnitude |�(9$)| and
phase ∠�(9$) of the frequency response function. Each of these is a
function of angular frequency $, so plotting |�(9$)| vs. $ and ∠�(9$) vs. $ is quite
useful. Bode plots are such plots with axes scaled in a specific manner.
A Bode plot is a useful graphical representation of the frequency response of

a system. Let |*($)| and |.($)| be the complex amplitudes of the input and the
output, respectively. Recall that the magnitude of the frequency response function
|�(9$)| can be expressed as

|�(9$)| =
����.($)*($)

����. (13.21)

This is a ratio of amplitudes, and so it is akin to amplitude ratios commonly
expressed in decibels (dB). However, the magnitude ratio of equation (13.21) is
not dimensionless, and therefore cannot be expressed as decibel in the strict sense.
Nevertheless, it is standard usage in system dynamics and control theory use the

https://ocw.mit.edu/resources/res-6-007-signals-and-systems-spring-2011/lecture-notes/MITRES_6_007S11_lec09.pdf
https://sys.ricopic.one/pu
https://sys.ricopic.one/pu

304 Chapter 13

familiar formula to compute the logarithmic magnitude

|�(9$)| = 20 log10 |�(9$)| dB. (13.22)

The phase is usually plotted in degrees, and the $-axis is logarithmic in both
plots. The two plots are typically tiled vertically with the magnitude plot above the
phase. We now work a simple example.

Example 13.2

Let a system have transfer function �(B)= B, a single zero at the origin. Find
the frequency response function and draw the Bode plot for the system.

From ??, we obtain the frequency response function

�(9$)= �(B)|B→9$

= 9$.

This lies on the imaginary-axis with magnitude

|�(9$)| =
√
<(�(9$))2 +=(�(9$))2

=
√

02 +$2

=$

= (20 log10 $) dB
and phase

∠�(9$)= arctan
=(�(9$))
<(�(9$))

= 90 deg.

So the bode plot is as shown below.

Frequency Response 305

10−2 10−1 100 101 102
−40

−20

0

20

40

|H
(jω

)|,
dB

10−2 10−1 100 101 102
0

45

90

angular frequency ω, rad/s

∠
H

(jω
),

de
g

Figure 13.1. Bode baby

13.4 Bode Plots for Simple Transfer Functions LINK
41

This lecture also appears in Control: an introduction.
It turns out that bode plots, both magnitude and phase, given their

logarithmic scale (recall that the $-axes are also plotted logarithmically), are quite
asymptotic to straight-lines for first- and second-order systems. Furthermore, higher-
order system transfer functions can be re-written as the product of those of first-and
second-order. For instance,

�(B)= B +
B3 + B2 + B + (13.23)

= · (B + 1) · 1
B + 1

· 1
B2 + B + (13.24)

Recall (from, for instance, phasor representation) that for products of complex
numbers, phases)8 add and magnitudes "8 multiply. For instance,

"1∠)1 ·
1

"2∠)2
· 1
"3∠)3

=
"1

"2"3
∠
(
)1 −)2 −)3

)
.

And if one takes the logarithm of the magnitudes, they add; for instance,

log
"1

"2"3
= log"1 − log"2 − log"3.

There is only one more link in the chain: first- and second-order Bode plots depend
on a handful of parameters that can be found directly from transfer functions. There
is no need to compute |�(9$0)| and ∠�(9$0)!

https://sys.ricopic.one/41
https://sys.ricopic.one/41
http://ricopic.one/control/

306 Chapter 13

In a manner similar to ??, we construct Bode plots for several simple transfer
functions in this lecture. Once we have these simple “building blocks,” we will be
able to construct sketches of higher-order systems by graphical addition because
logarithmic magnitudes and phases combine by summation, as shown in ??.

13.4.1 Constant Gain

For a transfer function that is simply a constant real gain �(B)= , the frequency
response function is trivially �(9$)= . Its magnitude |�(9$)| = | |. For positive
gain , the phase is ∠�(9$)= 0, and for negative , the phase is ∠�(9$)= 180 deg.

13.4.2 Pole and Zero at the Origin

In ??, we have already demonstrated how to derive from the transfer function
�(B)= B, a zero at the origin, the frequency response function plotted in ??. Similarly,
for �(B)= 1/B, a pole at the origin, the frequency response function plotted in
figure 13.2.

10−2 10−1 100 101 102
−40

−20

0

20

40

|H
(jω

)|,
dB

10−2 10−1 100 101 102
−90

−45

0

angular frequency ω, rad/s

∠
H

(jω
),

de
g

(a)

10−2 10−1 100 101 102
−40

−20

0

20

40

|H
(jω

)|,
dB

10−2 10−1 100 101 102
0

45

90

angular frequency ω, rad/s

∠
H

(jω
),

de
g

(b)

Figure 13.2. Bode plots for (a) a pole at the origin and (b) a zero at the origin.

Frequency Response 307

13.4.3 Real Pole and Real Zero

The derivations for real poles and zeros are not included, but the resulting Bode
plots are shown in figure 13.3.

10−2 10−1 100 101 102
−40

−30

−20

−10

0

|H
(jω

)|,
dB

10−2 10−1 100 101 102
−90

−45

0

normalized angular frequency τω

∠
H

(jω
),

de
g

(a)

10−2 10−1 100 101 102
0

10

20

30

40

|H
(jω

)|,
dB

10−2 10−1 100 101 102
0

45

90

normalized angular frequency τω

∠
H

(jω
),

de
g

(b)

Figure 13.3. Bode plots for (a) a single real pole and (b) a single real zero.

13.4.4 Complex Conjugate Pole Pairs and Zero Pairs

The derivations for complex conjugate pole pairs and zero pairs are not included,
but the resulting Bode plots are shown in figure 13.4.

308 Chapter 13

10−1 100 101
−40

−20

0

20

|H
(j
ω

)|
,

dB

10−1 100 101
−180

−135

−90

−45

0

normalized angular frequency ω/ωn

∠
H
(j
ω

),
de

g ζ= 0.1

ζ= 0.3

ζ= 0.5

ζ= 0.7

ζ= 0.9

(a)

10−1 100 101
−20

0

20

40

|H
(j
ω

)|
,

dB

10−1 100 101
0

45

90

135

180

normalized angular frequency ω/ωn

∠
H
(j
ω

),
de

g

ζ= 0.1

ζ= 0.3

ζ= 0.5

ζ= 0.7

ζ= 0.9

(b)

Figure 13.4. Bode plots for (a) a complex conjugate pole pair and (b) a complex conjugate
zero pair.

13.5 Sketching Bode Plots LINK
RQ

We can use MATLAB’s bode command to create Bode plots from LTI
system models. However, we must understand how these plots relate
to their transfer functions. In this section, we learn to sketch Bode plots in order to
deepen our intuition of this relationship.
Let �(B)=∏

8 �8(B); that is, let �(B) be the product of several factors �8(B). The
magnitude and phase are

|�(B)| =
∏
8

|�8(B)| and ∠�(B)=
∑
8

∠�8(B).

The Bode plot consists of plots of 20 log10 |�(B)| and ∠�(B) with B ↦→ 9$. The
magnitude and phase expressions, become

20 log10 |�(9$)| =
∑
8

20 log10 |�8(9$)| and ∠�(9$)=
∑
8

∠�8(9$).

This result means we can graphically sum both the magnitude and phase Bode
plots of the individual factors of �(B), as long as we are adding magnitudes in dB.

https://sys.ricopic.one/rq
https://sys.ricopic.one/rq

Frequency Response 309

Example 13.3

Given the transfer function

�(B)= 200000(B + 1)
B3 + 110B2 + 11000B + 100000

answer the following questions and imperatives.

1. Sketch a Bode plot.
2. Confirm the accuracy of the sketch in Matlab, using the functions bode and

tf.
3. If the input to a system with this transfer function is 5 sin($C +�/7), what

is the output amplitude and phase for

1. $= 1 rad/s,
2. $= 10 rad/s, and
3. $= 1000 rad/s?

Use Matlab’s function evalfr to perform the calculations.

A To sketch the transfer function, we must decompose the transfer function
into multiple simple factors. First, we can find the poles:

−10,−50+ 986.6,−50− 986.6,

which tells us we have a complex conjugate pair and a single real pole. Factoring,
accordingly,

�(B)= 200000(B + 1) · 1
B + 1

· 1
B2 + 100B + 10000

= 2(B + 1) · 1
B/10+ 1

· 1002

B2 + 2 · 0.5 · 100B + 1002
.

The sketch is shown in figure 13.5.

310 Chapter 13

10−1 101 102 103

−20

20

40

|H
(9
$
)|,

d
B

10−1 101 102 103

−180

−135

−90

−45

45

90

frequency $, rad/B
∠
�
(9
$
),
d
eg

Figure 13.5. a Bode plot for ??.

B See the code listing below.

sys = 2e5*...
tf(...
[1,1],...
[1,110,11000,1e5]...

);
bode(sys);

C The output amplitude is always 5|�(9$)| and output phase is always �/7+
∠�(9$). We could estimate them from the Bode plot sketch, but we instead
choose to evaluate the Matlab transfer function, as in the listing below.

in_amp = 5;
in_phase = pi/7; % rad
omega_a = [1,10,1e3]; % rad/s
for i = 1:length(omega_a)
H_eval = evalfr(sys,j*omega_a(i));
H_mag = abs(H_eval);
H_phase = angle(H_eval);
out_amp = 5*H_mag;
out_phase = in_phase + H_phase;
sprintf(...

['For input angular freq %0.2g,\n',...
' input amplitude %0.2g,\n',...
' input phase %0.2g,\n',...
' H magnitude %0.2g, and\n',...
' H phase %0.2g,\n',...
' the output amplitude is %0.2g and\n',...

Frequency Response 311

' the output phase is %0.2g.\n'...
],...
omega_a(i),...
in_amp,...
in_phase,...
H_mag,...
H_phase,...
out_amp,...
out_phase...

)
end

The output amplitudes are 14, 71, and 1 and the output phases are 1.1, 1, −2.6
rad.

13.6 Periodic Input, Frequency Response LINK
17

Let a system� have a periodic input D represented by a Fourier series.
For reals 00, $1 (fundamental frequency),A= , and)= , let

D(C)= 00

2
+

∞∑
==1

A= sin(=$1C +)=).

The =th harmonic is
D=(C)=A= sin(=$1C +)=),

which, from ?? yields forced response

H=(C)=A= |�(9=$1)| sin(=$1C +)= + ∠�(9=$1)).
Applying the principle of superposition, the forced response of the system to

periodic input D is

H(C)= 00

2
�(90) +

∞∑
==1

A= |�(9=$1)| sin(=$1C +)= + ∠�(9=$1)).

Similarly, for inputs expressed as a complex Fourier series with components

D=(C)= 2=4 9=$1C ,

each of which has output

H=(C)= 2=�(9=$1)4 9=$1C ,

the principle of superposition yields

H(C)=
∞∑

==−∞
2=�(9=$1)4 9=$1C .

https://sys.ricopic.one/17
https://sys.ricopic.one/17

312 Chapter 13

section 13.6 tell us that, for a periodic input, we obtain a periodic output with each
harmonic $= amplitude scaled by |�(9$=)| and phase offset by ∠�(9$=). As a result,
the response will usually undergo significant distortion, called phase distortion.
The system � can be considered to filter the input by amplifying and suppressing
different harmonics. This is why systems not intended to be used as such are still
sometimes called “filters.” This way of thinking about systems is very useful to the
study of vibrations, acoustics, measurement, and electronics.
All this can be visualized via a Bode plot, which is a significant aspect of its

analytic power. An example of such a visualization is illustrated in figure 13.6.

Frequency Response 313

ω

ω

ω

ω

ω

ω

Line Spectrum
of
Input

Line Spectrum
of
Output

Frequency
Response
of
System

Input
Magnitude,

An

Input
Phase,

φn

System
Magnitude,

|H(jω)|

System
Phase,

∠H(jω)

Output
Magnitude,

An|H(jnω0)|

Output
Phase,

φn + ∠H(jnω0)

System Response to Periodic Inputs

ω0 2ω0 3ω0 4ω0 5ω0 6ω0 7ω0 8ω0 9ω0

ω0 2ω0 3ω0 4ω0 5ω0 6ω0 7ω0 8ω0 9ω0

ω0 = 2π

 Τ = Fundamental Frequency

0

0

0

0

0

0

Figure 13.6. Response H of a system � to periodic input D.

314 Chapter 13

Example 13.4

In 9.1, we found that a square wave of amplitude one has trigonometric Fourier
series components

0= = 0 and 1= =
2
=�

(1− cos(=�))=
{

0 = even
4
=� = odd.

Therefore, from the definitions of �= and)= , with 1= ≥ 0,

�= = 1= and

)= = arctan
1=

0=
=

{
¿ (indeterminate) for = even

�/2 for = odd.

Let this square wave be the input D to a second-order system with frequency
response function �(9$), natural frequency $# =$5 (fifth harmonic frequency),
and damping ratio �= 0.1. Plot the magnitude and phase spectra of the input,
frequency response function, and output.

?? and ?? show the magnitude and phase spectra for input D, frequency response
function �(9$), and output H.

0

0.5

1

in
p
u
t
�
=

0

1

2

3

4

5

|�
(9
$
)|

Frequency Response 315

$0 $1 $2 $3 $4 $5 $6 $7 $8 $9
0

0.5

1
o
u
tp
u
t
|�

(9
$
=
)|�

=

316 Chapter 13

13.7 Problems LINK
HE

Problem 13.1 LINKGAUCHE Consider a system with i/o ODE

¥H + 0 ¤H + 1 H = 1 D
for constants 0, 1 ∈R.
1. Derive the frequency response function�(9$) and the transfer function�(B).

Hint: either can be found from the other.

2. Let D(C)= 7 cos(5C + 3). What is the steady state forced response H(C) in terms
of 0, 1? Hint: this shouldn’t require much computation.

3. Now let D(C)= 3 �(C), an impulse. What is the impulse response H(C) in terms
of the inverse Fourier transform ℱ −1 and �(9$)? Do not substitute in for
�(9$) or inverse transform.

4. Use computer software to plot the Bode plot of �(9$) for 0 = 1 = 1.
5. For 1 = 1, for what range of 0 will there be a complex conjugate pair of poles?3

Hint: consider comparing the transfer function derived in part (a) to the standard

form of the second-order transfer function in figure 13.4a.

Problem 13.2 LINKTICKLE Let a transfer function � be

10(B + 100)
B2 + 2 B + 100

.

Use � to respond to the following questions and imperatives.

1. Write � as a product of standard-form transfer functions.
2. Find the frequency response function �(9$) without simplifying.
3. Use the axes below to sketch the Bode plot of �.

3. Superposition applies to linear systems and this system is linear; in fact, any system with a frequency
response function is linear.

https://sys.ricopic.one/he
https://sys.ricopic.one/he
https://sys.ricopic.one/gauche
https://sys.ricopic.one/tickle

Frequency Response 317

10−1 100 101 102 103 104

40

20

0

−20

−40

$ (rad/s)

|�
(9
$
)|
(d
B
)

10−1 100 101 102 103 104

90

45

0

−45

−90

−135

−180

$ (rad/s)

∠
�
(9
$
)(
d
eg

)

Problem 13.3 LINKME Let a transfer function � be

�(B)= 1000(B + 10)
(B + 100)(B + 1000) .

Use � to respond to the following questions and imperatives.

1. Write � as a product of standard-form transfer functions.
2. Find the frequency response function �(9$) without simplifying.
3. Use the axes below to sketch the Bode plot of �.

https://sys.ricopic.one/me

318 Chapter 13

10−1 100 101 102 103

40

20

0

−20

−40

$ (rad/s)

|�
(9
$
)|
(d
B
)

10−1 100 101 102 103

90

45

0

−45

−90

−135

−180

$ (rad/s)

∠
�
(9
$
)(
d
eg

)

Problem 13.4 LINKELMO Consider a system with transfer function

�(B)= 100(B + 9)
(B + 5)(B + 6)(B2 + 8B + 32) .

1. Identify the poles and zeros of �.
2. Derive the frequency response function �(9$). Do not simplify the expres-

sion.
3. Create a Bode plot of �.
4. Let the system have sinusoidal input D(C)= 2 cos(3C). What is the steady-state

system output H(C)?
5. Let the system have the same sinusoidal input as previously. Simulate its

forced response for nine seconds and plot it.

Problem 13.5 LINKHUM In many measurement systems, an interference signal (i.e.,
an uncontrolled, undesirable signal that appears in a signal) that often appears
in measurements is themains hum, which arises from the mains power grid. Its

https://sys.ricopic.one/elmo
https://sys.ricopic.one/hum

Frequency Response 319

fundamental frequency is 51 = 60 Hz, and much smaller-amplitude components
appear at higher harmonics.
Consider the following measurement system. A pressure sensor has transfer

function

�(B)= 1 · 103

B2 + 1 · 103B + 1 · 106
.

with units V/Pa. The desired measurement signal has maximum angular frequency
$sig = 100 rad/s. Mains hum is observed in themeasurement signal withmagnitude
< = 0.5 V.
Design a first-order low-pass filter

�(B)= 1
B/$1 + 1

for the output of the sensor with the following steps:

1. Derive the filter frequency response function �(9$).
2. Compute the magnitude |�(9$)| of the frequency response function.
3. Solve for the break frequency $1 such that |�(9$sig)| = 0.97. This design will

leave the desired signal only lightly attenuated but will further attenuate the
mains hum.

4. Compute the attenuation of the mains hum amplitude |�(960 · 2�)| and the
corresponding filter output |�(960 · 2�)|<.

5. Compute the steady-state filtered output amplitude for a sensor input
1 sin($sigC) kPa.

6. Suppose a greater attenuation of the mains hum interference is desired.
How could the filter �(B) be altered to reduce it further without significantly
attenuating the desired signal?

7. Find the sensor’s natural frequency $= and damping ratio �. Its peak output

magnitude occurs at a frequency of $? =$=

√
1− 2�2. Compute $? for the

sensor �.
8. Compute the steady-state filtered output amplitude for a sensor input

1 sin($?C) kPa. Explain why it is greater than the filtered output magnitude
at $sig from part e.

14 Nonlinear Systems and Linearization LINK
XX

Thus far, we’ve mostly considered linear system models. Many of the analytic
tools we’ve developed—ODE solution techniques, superposition, eigendecom-
position, stability analysis, impedance modeling, transfer functions, frequency
response functions—donot apply to nonlinear systems. In fact, analytic solutions are
unknown for most nonlinear system ODEs. And even basic questions are relatively
hard to answer; for instance: is the system stable?
In this and the following chapters, we consider a few analytic and numerical

techniques for dealing with nonlinear systems.
A state-space model has the general form

3x
3C

= f (x , u , C) (14.1)

y= (14.2)

where f and g are vector-valued functions that depend on the system.Nonlinear
state-space models are those for which f is a nonlinear functional of either x or
u. For instance, a state variable G1 might appear as G2

1 or two state variables might
combine as G1G2 or an input D1 might enter the equations as log D1.

14.0.1 Autonomous and Nonautonomous Systems

An autonomous system is one for which f (x), with neither time nor input appearing
explicitly. A nonautonomous system is one for which either C or u do appear
explicitly in f . It turns out that we can always write nonautonomous systems as
autonomous by substituting in u(C) and introducing an extra state variable for C
(Strogatz and Dichter 2016).
Therefore, without loss of generality, we will focus on ways of analyzing

autonomous systems.

https://sys.ricopic.one/xx
https://sys.ricopic.one/xx

322 Chapter 14

14.0.2 Equilibrium

An equilibrium state (also called a stationary point) x is one for which 3x/3C = 0. In
most cases, this occurs only when the input u is a constant u and, for time-varying
systems, at a given time C. For autonomous systems, equilibrium occurs when the
following holds:

(14.3)

This is a system of nonlinear algebraic equations, which can be challenging to solve
for x. However, frequently, several solutions—that is, equilibrium states—do exist.

14.1 Linearization LINK
MG

A common method for dealing with a nonlinear system is to linearize
it: transform it such that its state equation is linear. A linearizedmodel
is typically only valid in some neighborhood of state-space. This neighborhood is
selected by choosing an operating point x> used in the linearization process. We
use two considerations when choosing an operating point:

1. that implied by the name—it should be in a region of state-space in which the
state will stay throughout the system’s operation—and

2. the validity of the model near the operating point.

Due to the fact that nonlinear systems tend to be more-linear near equilibria,
the second consideration frequently suggests we choose one as an operating point:
x> = x.

14.1.1 Taylor Series Expansion

A Taylor series expansion of equation (14.1) about an operating point x> , u> (for a
nonautonomous system) yields polynomial terms that are linear, quadratic, etc. in
x and u. If we keep only the linear terms and define new state and input variables

x∗ = x − x> and u∗ = u − u> (14.4)

we get a linear state equation

3x∗

3C
=�x∗ + �u∗ (14.5)

where the matrix components are given by

�8 9 =
% 58
%G 9

����
x> ,u>

and �8 9 =
% 58
%D9

����
x> ,u>

. (14.6)

These first-derivative matrices are generally called Jacobianmatrices.
This result also applies to autonomous equations if we drop the �u∗ term.

https://sys.ricopic.one/mg
https://sys.ricopic.one/mg

Nonlinear Systems and Linearization 323

Example 14.1

Consider a vehicle suspension system that is overloaded such that its springs
are exhibiting hardening behavior such that a lumped-parameter constitutive
equation for the springs (collectively) is

5: = :G: + 0G3
:

where 5: is the force, G: the displacement, and :, 0 > 0 constant parameters of
the spring.

1. Develop a (nonlinear) spring-mass-damper linear graph model for the
vehicle suspension with input position source -B .

2. Derive a nonlinear state-space model from the linear graph model using
the state vector

x =
[
G< E<

]>
.

3. Linearize the system about the operating point

x> =
[
1 0

]>
and u> =

[
0
]

by computing the �, �, and � matrices of the linearized system.a

a. The � matrix is the Jacobian with respect to the time-derivative of the input: ¤u, which arises
occasionally.

14.2 Nonlinear System Characteristics LINK
TX

Characterizing nonlinear systems can be challenging without the
tools developed for linear system characterization. However, there
are ways of characterizing nonlinear systems, and we’ll here explore a few.

14.2.1 Those In-Common with Linear Systems

As with linear systems, the system order is either the number of state-variables
required to describe the system or, equivalently, the highest-order derivative in a
single scalar differential equation describing the system.
Similarly, nonlinear systems can have state variables that depend on time alone or

those that also depend on space (or some other independent variable). The former
lead to ordinary differential equations (ODEs) and the latter to partial differential
equations (PDEs).
Equilibrium was already considered in ??.

https://sys.ricopic.one/tx
https://sys.ricopic.one/tx

324 Chapter 14

14.2.2 Stability

In terms of system performance, perhaps no other criterion is as important as
stability.

Definition 14.1

If x is perturbed from an equilibrium state x, the response x(C) can:
1. asymptotically return to x (asymptotically),
2. diverge from x (), or
3. remain perturned or oscillate about x with a constant amplitude

(stable).

Notice that this definition is actually local: stability in the neighborhood of one
equilibrium may not be the same as in the neighborhood of another.
Other than nonlinear systems’ lack of linear systems’ eigenvalues, poles, and

roots of the characteristic equation fromwhich to compute it, the primary difference
between the stability of linear and nonlinear systems is that nonlinear system
stability is often difficult to establish globally. Using a linear system’s eigenvalues,
it is straightforward to establish stable, unstable, and marginally stable subspaces
of state-space (via transforming to an eigenvector basis). For nonlinear systems, no
such method exists. However, we are not without tools to explore nonlinear system
stability. One mathematical tool to consider is Lyapunov stability theory, which is
beyond the scope of this course, but has good treatments in (Brogan 1991; Ch. 10)
and (Choukchou-Braham et al. 2013; App. A).

14.2.3 Qualities of Equilibria

Equilibria (i.e. stationary points) come in a variety of qualities. It is instructive to
consider the first-order differential equation in state variable x with real constant
r:

G′= AG − G3.

If we plot G′ versus G for different values of A, we obtain the plots of figure 14.1.

G

G′

(a) A < 0

G

G′

(b) A = 0

G

G′

(c) A > 0

Figure 14.1. Plots of G′ versus G for eq:equilibria_nonlinear_third_order.

Nonlinear Systems and Linearization 325

By definition, equilibria occur when G′= 0, so the G-axis crossings of figure 14.1
are equilibria. The blue arrows on the G-axis show the direction (sign) of state
change G′, quantified by the plots. For both (a) and (b), only one equilibrium exists:
G = 0. Note that the blue arrows in both plots point toward the equilibrium. In such
cases—that is, when a neighborhood exists around an equilibrium for which state
changes point toward the equilibrium—the equilibrium is called an attractor or
sink. Note that attractors are stable.
Now consider (c) of figure 14.1. When A > 0, three equilibria emerge. This change

of the number of equilibria with the changing of a parameter is called a bifurcation.
A plot of bifurcations versus the parameter is called a bifurcation diagram. The
G = 0 equilibrium now has arrows that point away from it. Such an equilibrium is
called a repeller or source and is unstable. The other two equilibria here are (stable)
attractors. Consider a very small initial condition G(0)= &. If & > 0, the repeller
pushes away G and the positive attractor pulls G to itself. Conversely, if & < 0, the
repeller again pushes away G and the negative attractor pulls G to itself.
Another type of equilibrium is called the saddle: one which acts as an attractor

along some lines and as a repeller along others. Wewill see this type in the following
example.

Example 14.2

Consider the dynamical equation

G′= G2 + A
with A a real constant. Sketch G′ vs G for negative, zero, and positive A. Identify
and classify each of the equilibria.

14.3 Nonlinear Systems in Python LINK
83

Most of the Python Control Systems package tools we’ve usedwill not
work for nonlinear systems. For instance, nonlinear systems cannot be
defined with control.tf(), control.ss(), and control.zpk(). Similarly, the
simulation functions control.forced_response(), control.initial_response(),
and control.step_response() do not work for nonlinear systems.
There are two common ways of defining and simulating nonlinear systems in

Python. The first uses the SciPy package’s integratemodule’s functions such as
solve_ivp(). The second uses the Control Systems package, which has nonlinear
state-space model reprsentations. For simulating nonlinear systems, the Control
Systems package actually calls the SciPy package’s integratemodule’s functions.
Because we have already been using the Control Systems package for linear system

https://sys.ricopic.one/83
https://sys.ricopic.one/83

326 Chapter 14

models, we will us its nonlinear facilities, as well. However, it should be mentioned
that the package’s documentation for nonlinear systems is a bit sparse.

14.3.1 Defining a Nonlinear System

14.4 Nonlinear Systems in Matlab LINK
UT

Many of the Matlab tools we’ve used will not work for nonlinear
systems; for instance, system-definition with tf, ss, and zpk and

simulation with lsim, step, initial—none will work with nonlinear systems.

14.4.1 Defining a Nonlinear System

We can define a nonlinear system in Matlab by defining its state-space model in a
function file. Consider the nonlinear state-space model1

¤x = 5 (x)

=

[
G2

(1− G2
1)G2 − G1

]
.

A function file describing it is as follows.

type van_der_pol.m

function dxdt = van_der_pol(t,x)
dxdt = [...

x(2); ...
(1-x(1)^2)*x(2) - x(1) ...

];

Note that x is representing the (two) state vector x, which, along with time t (C),
are passed as arguments to van_der_pol. The variable dxdt serves as the output
(return) of the function. Effectively, van_der_pol is simply 5 (x), the right-hand
side of the state equation.

14.4.2 Simulating a Nonlinear System

The nonlinear state equation is a system of ODEs. Matlab has several numerical
ODE solvers that perform well for nonlinear systems. When choosing a solver, the
foremost considerations are ODE stiffness and required accuracy. Stiffness occurs
when solutions evolve on drastically different time-scales. For a more-thorough
guide for selecting an ODE solver, see mathworks.com/help/matlab/math/choose
-an-ode-solver.html
For most ODEs, the ode45 Runge-Kutta solver is the best choice, so try it first. Its

syntax is paradigmatic of all Matlab solvers.

1. This is a van der Pol equation.

https://sys.ricopic.one/ut
https://sys.ricopic.one/ut
mathworks.com/help/matlab/math/choose-an-ode-solver.html
mathworks.com/help/matlab/math/choose-an-ode-solver.html

Nonlinear Systems and Linearization 327

[t,y] = ode45(...
odefun, ... % ODE function handle, e.g. van_der_pol
time, ... % time array or span
x0 ... % initial state

)

Details here include

1. the ODE function given must have exactly two arguments: t and x;
2. the time array or span doesn’t impact solver steps; and
3. the initial conditions must be specified in a vector size matching the state
vector x.

Let’s apply this to our example from above.We begin by specifying the simulation
parameters.

x0 = [3;0];
t_a = linspace(0,25,300);

And now we simulate.

[~,x] = ode45(@van_der_pol,t_a,x0);

Note that since we specified a full time array t_a, and not simply a range, the
time (first) output is superfluous. We can avoid assigning it a variable by inserting
~ appropriately.

14.4.3 Plotting the Response

In time, the response is shown in figure 14.2. Note the weirdness—this is certainly
no decaying exponential!

figure
plot(...

t_a,x.', ...
'linewidth',1.5 ...

)
xlabel('time (s)')
ylabel('free response')
legend('x_1','x_2')

It seems the response is settling into a non-sinusoidal periodic function. This is
especially obvious if we consider the phase portrait of figure 14.3.

328 Chapter 14

2 4 6 8 10 12 14 16 18 20 22 24

−2

2

time (s)fr
ee
re
sp
o
n
se

x1
x2

Figure 14.2

figure
plot(...

x(:,1),x(:,2), ...
'linewidth',2 ...

)
xlabel('x_1')
ylabel('x_2')

−6 −4 −2 2 4 6

−2

2

x1

x 2

Figure 14.3

Nonlinear Systems and Linearization 329

14.5 Nonlinear Fluid System Example LINK
T0

This example gets one started on the design problem ??.
Consider a fluid system with an input volumeric flowrate &B into a

capacitance � that is drained by only a single pipe of nonlinear resistance ' and !,
as shown in the linear graph of figure 14.4. The nonlinearity of ' is a good way to
model an overflow. In this lecture, we will derive a nonlinear state-space model for
the system—specifically, a state equation—and solve it, numerically using Matlab.

&B

�

'

!

Figure 14.4. A linear graph and normal tree (green) for a nonlinear fluid system.

14.5.1 Normal Tree, Order, and Variables

figure 14.4 already shows the normal tree. There are two independent energy storage
elements, making it a second-order (= = 2) system. We define the state vector to be

x =
[
%� &!

]>
.

The input vector is defined as u =
[
&B

]
.

14.5.2 Elemental, Continuity, and Compatibility Equations

Before turning to our familiar elemental equations, we’ll consider the nonlinear
resistor.

14.5.2.1 Nonlinear Elemental Equation Suppose we are trying to model an
overflow with the pipe '–! to ground. An overflow would have no flow until
the fluid capcitor fills to a certain height, then it would transition to flowing quite
rapidly. This process seems to be inherently nonlinear because we cannot write an
element that depends linearly on the height of the fluid in the capacitor (even if
height was one of our state variables, which it is not).
The volume in the tank can be found by integrating in flow (&B) minus out flow

(&'), but this is not accessible within a simulation, since it must be integrated, so it’s
not an ideal variable for our model. However, the pressure %�—a state variable—is

https://sys.ricopic.one/t0
https://sys.ricopic.one/t0

330 Chapter 14

proportional to the fluid height in the capacitor, which we’ll call ℎ:

%� = �6ℎ,

where � is the density of the fluid and 6 is the gravitational acceleration. Since the
height of the capacitor is presumably known, we can use %� to be our fluid height
metric.
When the height ℎ reaches a certain level, probably near the capacitor’s max,

which we’ll denote ℎ< , we want our overflow pipe '-! to start flowing. Since %� is
our height metric, we want to define a resistance as a function of it, '(%�).
Now we must determine the form of '(%�). Clearly, when ℎ ∼%� is small, we

want as little as possible flow through '-!, so '(%�) should be large. If ' was
infinitely large, divisions by zero would likely arise in a simulation, so we choose
to set our low-pressure ' to some finite value:

'(%�)|%�→0 ='0.

Conversely, when ℎ ∼%� is large (near max), we want maximum flow through '-!,
so '(%�) should be some finite value, say, that of the pipe:

'(%�)|%�→∞ ='∞.

Clearly, this model requires '∞ � '0.
The transition from '0 to '∞ should be smooth in order to minimize numerical

solver difficulties. Furthermore, a smooth transition is consistent with, say, a float
opening a valve at the bottom of the capacitor,2 since the valve would transition
continuously from closed to open. Many functions could be used to model this tran-
sition, especially if piecewise functions are considered. However, the tanh function
has the merit of enabling us to easily define a single non-piecewise function for the
entire domain. Let %� be the transition pressure and Δ%� be the transition width. A
convenient nonlinear resistor, then, is

'(%�)='∞ + '0 −'∞
2

(
1− tanh

5(%� −%�)
Δ%�

)
.

Note that this function only approximately satisfies '(%�)|%�→0 ='0, but the small
deviation from this constraint is worth it for the convenience it provides. Another
noteworthy aspect of section 14.5.2.1 is the factor of 5, which arises from the tanh
function’s natural transition width, which we alter via Δ%� .

2. Note that this model might be said to assume the overflow pipe is attached to the bottom of the
capacitor since the pressure driving fluid through this pipe is supposed to be %� . However, no matter
the overflow valve’s inlet height, if its outlet is at the height of the bottom of the capacitor, this model is
still valid.

Nonlinear Systems and Linearization 331

14.5.2.2 Other Elemental Equations and the Continuity and Compatibility Equa-

tions The other elemental equations have been previously encountered and are
listed in the table, below. Furthermore, continuity and compatibility equations can
be found in the usual way—by drawing contours and temporarily creating loops by
including links in the normal tree. We proceed by drawing a table of all elements
and writing an elemental equation for each element, a continuity equation for each
branch of the normal tree, and a compatibility equation for each link.

el. elemental eq.

�
3%�

3C
=

1
�
&�

!
3&!

3C
=

1
!
%!

' %' =&''(%�)

el. cont/comp. eq.

� &� =&B −&!

! %! =%� −%'
' &' =&!

14.5.3 State Equation

The system of equations composed of the elemental, continuity, and compatibility
equations can be reduced to the state equation. This equation nonlinear, so it cannot
be written in the linear for with � and � matrices. However, it can still be written
as a system of first-order ordinary differential equations, as follows:

3x
3C

= 5 (x , u)

=

[
(&B −&!)/�

(%� −&!'(%�))/!

]
.

Although it appears simple, this nonlinear differential equation likely has no known
analytic solution. Two other options are available:

1. linearize the model about an operating point and solve the linearized equation
or

2. numerically solve the nonlinear equation.

Both methods are widely useful, but let’s assume we require the model to be
accurate over a wide range of capacitor fullness. Therefore, we choose to investigate
via numerical solution.

14.5.4 Simulation

Broadly, the numerical investigation will be conducted via Matlab’s ode23t solver.
Of course, as with any numerical solution, specific values of the parameters must
be selected. We begin with declaring the fluid to be water, endowing it with a
density, and specify the gravitational acceleration 6. Furthermore, an “anonymous”
function P_fun is defined, accepting the height h of the fluid in the capacitor and
returning the corresponding pressure. Other parameters specified include the fluid
capacitance C and the overflow pipe inertance L.

332 Chapter 14

global C L % global to be used in state equation
C = 1e3; % ... fluid capacitance
L = 1e-3; % ... fluid inertance
rho = 997; % kg/m^3 ... density of water
g = 9.81; % m/s^2 ... gravitational constant
P_fun = @(h) rho*g*h; % pressure as a function of height

Next, we define themaximumheight h_max of fluid in the capacitor, the transition
height h_t, and the distance dh over which the resistor will transition from high to
low impedance.

h_max = 1; % m ... maximum height of fluid
h_t = .88; % m ... transition height
dh = .05; % m ... height difference for transition

Corresponding pressures, which we prefer for computation, can be computed
with P_fun.
P_t = P_fun(h_t); % N/m^2 ... transition pressure
dP = P_fun(dh); % N/m^2 ... pressure dif for transition

14.5.5 Nonlinear Resistance

Now, let’s define the variable resistance function R_fun ('(%�)). We define the
anonymous function via the two “limiting” resistances R_0 ('0) and R_inf ('∞).

R_inf = 1e-1; % N/m^2 / m^3/s ... resistance with full cap
R_0 = 1e2; % ... resistance with empty capacitor
R_fun = @(P) (R_0-R_inf)/2*(1-tanh(5/dP*(P-P_t)))+R_inf;

Let’s take a moment to plot this function. See figure 14.5 for the results. This is a
reasonable approximation of a valve that allows no flow until the capacitor fluid
height reaches a threshold, then allows a significant amount of flow.

h_half = linspace(0,h_t-dh,50);
h_a = [... % heights to plot

h_half(1:end-1),...
linspace(h_half(end),h_max,50)...

];
P_a = P_fun(h_a); % N/m^2 ... pressures to plot

Nonlinear Systems and Linearization 333

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

50

100

height (m)

n
o
n
li
n
ea
r
re
si
st
an
ce
'
,N

-s
/
m

5

Figure 14.5

14.5.6 Numerical Solution

The numerical ODE solver we’ll use (ode23t) requires we define the first-order sys-
tem of differential equations from section 14.5.3. This is done by writing a function
file nonlinear_fluid_state.m that the function return the time derivative of the
state vector x_a (x) at a given time.

function dx = nonlinear_fluid_state(t,x,u_fun,R_fun)
global C L
% x(1) is P_C
% x(2) is Q_L
% R_fun is the nonlinear resistance

% call input function at this time step
Q_s = u_fun(t);

% compute nonlinear resistance at this time step
R = R_fun(x(1));

dx = zeros(2,1); % a column vector
dx(1) = (Q_s - x(2))/C; % d P_C/dt
dx(2) = (x(1) - x(2)*R)/L; % d Q_L/dt
end

We also pass it the nonlinear resistance function R_fun and the input function
Q_s_fun. Let’s model an offset sinusoidal input flowrate, defined as an anonymous
function as follows.

Q_s_fun = @(t) 1e4*(1+sin(2*pi/1e2*t));

334 Chapter 14

We’re ready to simulate! The time array and zero initial conditions are specified,
then simulation commences. There are several Matlab ODE solver routines with
the same or similar syntax. Many ODEs can be solved with the ode45 function.
However, this problem is what is called “stiff,” which runs much better on the
solver ode23t.
t_a = linspace(0,1.4e3,1e3);
x_0 = [0;0];
x_sol_struc = ode23t(...

@(t,x) nonlinear_fluid_state(t,x,Q_s_fun,R_fun),...
t_a,...
x_0...

);
x_sol = deval(x_sol_struc,t_a);

We plot the results in figure 14.6. So the overflow is relatively inactive while the
capacitor fills, until %� achieves the pressure associated with a near-full capacitor.
Then the flowrate suddenly increases rapidly due to the sudden drop in '(%�).
Since the input is oscillating, the overflow pipe loses flowrate, then gains it again
when the input flowrate increases enough to increase the capacitor pressure.

Nonlinear Systems and Linearization 335

0 2 4 6 8 10 12 14 16 18 20 22
0

2,000

4,000

6,000

8,000

10,000
%
�
re
sp
o
n
se
,N

/
m

2

0 2 4 6 8 10 12 14 16 18 20 22
0

5,000

10,000

15,000

20,000

time (min)

fl
o
w
ra
te
,m

3 /
s

&B
&!

Figure 14.6

336 Chapter 14

14.6 Problems LINK
EM

Problem 14.1 LINKSIGMUND Consider a nonlinear capacitor with constitutive equation
relating charge @� and voltage E� :

@� = :E
3/2
�

with : a positive constant.

1. Derive an elemental equation relating 3E�/3C and 8� for the nonlinear
capacitor.

2. From the elemental equation, what is the voltage-dependent capacitance
�(E�)?

3. Consider the RLC-circuit of figure 14.7, which includes the nonlinear
capacitor. Derive a nonlinear state-space equation with state vector

x =
[
E� 8!

]>
.

4. For a constant input +((C)= 5V, derive the equilibrium state.
5. Linearize the state-space equation about the operating point

x> , u> =
[
5V 0A

]>
,
[
5V

]
.

Define the state equation matrices � and �, the linearized state and input
vectors x∗ and u∗, and the linearized state equation.

+
−+(

' !

�(E�)

Figure 14.7. Circuit for problem 14.1.

Problem 14.2 LINKFREUD In problem 14.1, you derived a nonlinear state-space model
for the RLC circuit of figure 14.7, which includes a nonlinear capacitor, and lin-
earized the state equation about an operating point. Use these results to perform
the following analysis.

https://sys.ricopic.one/em
https://sys.ricopic.one/em
https://sys.ricopic.one/sigmund
https://sys.ricopic.one/freud

Nonlinear Systems and Linearization 337

1. Write a program to simulate the nonlinear state-space model for initial condi-

tion x(0)=
[
1 0

]>
and step input u(C)= 5DB(C). Let '= 10 Ω, != 1 mH, and

: = 10−6. Try simulating for 1 ms.
2. Add to the program the simulation of the linearized system for the same initial

condition and input.
3. Compare (by graphing) the nonlinear and linearized step responses. (Don’t

forget that x∗ ≠ x!)

Problem 14.3 LINKFRANZ Anonlinear diodemodel gives a diode’s elemental equation
to be

8� = �B(exp (E�/+TH) − 1).
We let the saturation current be �B = 10−12 A and the thermal voltage be +TH = 0.025
V. Considering this nonlinear diode model for the circuit of figure 14.8.

+
−+(

�
' !

�

Figure 14.8. Circuit for ??.

1. Derive a nonlinear state-space equation with state vector

x =
[
E� 8!

]>
.

Hint: include the diode in your normal tree.

2. For a constant input +((C)= 0V, derive the equilibrium state.
3. Linearize the state-space equation about the operating point

x> , u> =
[
0V 0A

]>
,
[
0V

]
.

Hint: 3 ln(G)/3G = 1/G. Define the state equation matrices � and �, the
linearized state and input vectors x∗ and u∗, and the linearized state equation.

https://sys.ricopic.one/franz

338 Chapter 14

Problem 14.4 LINKKAFKA Let the nonlinear state equation of a circuit like figure 14.8,
including a diode, be

3x
3C

= f (x , u)

=

[1
� 8!

1
! (−+TH ln(8!/�B + 1) −'8! ++(− E�)

]
.

1. Write a program to simulate the nonlinear state-space model for initial con-

dition x(0)=
[
0 0

]>
and input u(C)= 1+ 0.1 cos(8000�C). Let �B = 10−12 A,

+TH = 25 mV, '= 10 Ω, != 1 mH, and � = 10�F. Try simulating for 1 ms.
Hint: the ode is stiff, so simulate with ode23s.

2. Add to the program the simulation of the linearized system (with operating

point x> =
[
0 �B

]>
, D> = 0) with � and � matrices

�=

[
0 1/�

−1/! −(+TH/(2�B) +')/!

]
and �=

[
0

1/!

]
for the same initial condition and input.

3. Compare (by graphing) the nonlinear and linearized step responses. (Don’t
forget that x∗ ≠ x!)

Problem 14.5 LINKHOOTENANNY Design a home rainwater catchment system and sprin-
kler distribution system.Most places, a surprising amount of water falls on a house’s
roof throughout a year. Capturing it for irrigation can save water costs and reduce
the environmental impact of watering lawns, plants, and gardens.
Design a home rainwater catchment and irrigation system. The design constraints

are as follows.

1. It should be designed for Olympia, Washington rainfall, as described in
table 14.1.

2. For a house, large tanks are unsightly. Instead, use a series of connected
barrels.

After discussions with the customer, the following design requirements for the
system are identified.

1. It should be capable of distributing one inch of water per unit area June
through September, even during drought conditions, during which there
is half the average rainfall in the months March through September (see
table 14.1.

2. The roof area for collection is 400 square ft.
3. The lawn area for distribution is 600 square ft.
4. It should be low-maintenance.

https://sys.ricopic.one/kafka
https://sys.ricopic.one/hootenanny

Nonlinear Systems and Linearization 339

5. The distribution system should be capable of being “blown out” during
winter months or it must be designed to handle sudden dips from 33 down
to 22 deg F for up to two days.3

6. When tanks are full, it should be able to gracefully dump excess water. If
possible, designing it to refresh itself by dumping old water for new water
is desired.

7. It should be able to handle a heavy rain of 1 inch per hour via an overflow
mechanism, but be able to handle a moderate rain of 0.2 inches per hour
without requiring overflow (unless the tanks are full).

8. It should be designed to be fed from typical house rain gutter downspouts.
9. Distribution should be automated.
10. Energy efficiency is desired. If possible, using tanks’ potential energy for

distribution is desired. In this case, unconventional distribution networks
are allowable (e.g. “drip” systems without conventional sprinkler heads that
require high pressure). However, the distribution hardware should not be
custom-designed.

11. Commercially available parts are desired. Minimize the number of custom
parts (zero is best).

The focus of the design problem is the sizing of the pipes, barrels, andmechanisms
based on a dynamic system analysis.[^2]
It is highly recommended that you use the following Fourier Series fit to the

Olympia drought rainfall data, presented as trigonometric series coefficient vectors
a and b for easy definition in Matlab.4

3. A potential way to mitigate freezing is keeping the water in motion. Care must be taken not to create
inadvertent ice skating rinks.

4. The fit is an 8-term Fourier series fit performed via Matlab’s fit function.

340 Chapter 14

Table 14.1: mean monthly rainfall data and corresponding “drought conditions” for
Olympia, Washington, USA (thurston_noaa2017).

month mean precip. (in) drought precip. (in)

January 8.51 8.51
February 5.82 5.82
March 4.85 2.43
April 3.11 1.55
May 1.84 0.92
June 1.42 0.71
July 0.67 0.34
August 1.31 0.65
September 2.36 1.18
October 4.66 4.66
November 7.66 7.66
December 8.52 8.52

w = 0.5236; % fundamental frequency
a0 = 3.579; % dc offset
a(1) = 4.144;
b(1) = 0.6244;
a(2) = 1.332;
b(2) = 0.07578;
a(3) = -0.07667;
b(3) = 0.03167;
a(4) = -0.2469;
b(4) = 0.0004836;
a(5) = -0.09448;
b(5) = 0.01735;
a(6) = 0.07417;
b(6) = -2.131e-06;
a(7) = -0.06748;
b(7) = -0.0124;
a(8) = -0.1235;
b(8) = -0.0002381;

A system model response to this input can be used to determine the system
parameters, such as the number of barrels required. Do not forget to include the
effect of distribution, which can be modeled as a negative source. Although we
have the tools to perform the analysis analytically, it is highly recommended that a
Matlab simulation is developed using ss to define the system and lsim to simulate
the response. A frequency response analysis using bodemay also prove useful. It

Nonlinear Systems and Linearization 341

may be possible to simply iteratively tweak design parameters until the simulation
meets the requirements.
A thorough report is required. It is highly recommended that LaTeX is used.

Thorough analysis, results, and design is required. All sizing and specific parts
are required. Either an analytic or a numerical (simulation) demonstration of the
design’s fulfillment of the requirements is required.

A Math Reference LINK
1G

This appendix contains a reference for algebra, trigonometry, and othermathematical topics.

A.1 Quadratic Forms LINK
6N

The solution to equations of the form 0G2 + 1G + 2 = 0 is

G =
−1 ±

√
12 − 402
20

.

A.1.1 Completing the Square

This is accomplished by re-writing the quadratic formula in the form of the left-hand-side
(LHS) of this equality, which describes factorization

G2 + 2Gℎ + ℎ2 = (G + ℎ)2.

A.2 Trigonometry LINK
4E

This section contains a reference for trigonometric identities.

A.2.1 Triangle Identities

With reference to figure A.1, the law of sines is

sin

0

=
sin �
1

=
sin �

2
(A.1)

and the law of cosines is

22 = 02 + 12 − 201 cos � (A.2)

12 = 02 + 22 − 202 cos � (A.3)

02 = 22 + 12 − 221 cos
 (A.4)

https://sys.ricopic.one/1g
https://sys.ricopic.one/1g
https://sys.ricopic.one/6n
https://sys.ricopic.one/6n
https://sys.ricopic.one/4e
https://sys.ricopic.one/4e

344 Appendix A

1

2
0

 �

�

Figure A.1. Triangle for the law of sines and law of cosines.

A.2.2 Reciprocal Identities

csc D =
1

sin D
(A.5)

sec D =
1

cos D
(A.6)

cot D =
1

tan D
(A.7)

A.2.3 Pythagorean Identities

1= sin2 D + cos2 D (A.8)

sec2 D = 1+ tan2 D (A.9)

csc2 D = 1+ cot2 D (A.10)

A.2.4 Cofunction Identities

sin
(�

2
− D

)
= cos D (A.11)

cos
(�

2
− D

)
= sin D (A.12)

tan
(�

2
− D

)
= cot D (A.13)

csc
(�

2
− D

)
= sec D (A.14)

sec
(�

2
− D

)
= csc D (A.15)

cot
(�

2
− D

)
= tan D (A.16)

Math Reference 345

A.2.5 Even-Odd Identities

sin(−D)=− sin D (A.17)

cos(−D)= cos D (A.18)

tan(−D)=− tan D (A.19)

A.2.6 Sum-Difference Formulas

sin(D ± E)= sin D cos E ± cos D sin E (A.20)

cos(D ± E)= cos D cos E ∓ sin D sin E (A.21)

tan(D ± E)= tan D ± tan E
1∓ tan D tan E

(A.22)

A.2.7 Double Angle Formulas

sin(2D)= 2 sin D cos D (A.23)

cos(2D)= cos2 D − sin2 D (A.24)

= 2 cos2 D − 1 (A.25)

= 1− 2 sin2 D (A.26)

tan(2D)= 2 tan D
1− tan2 D

(A.27)

A.2.8 Power-Reducing or Half-Angle Formulas

sin2 D =
1− cos(2D)

2
(A.28)

cos2 D =
1+ cos(2D)

2
(A.29)

tan2 D =
1− cos(2D)
1+ cos(2D) (A.30)

346 Appendix A

A.2.9 Sum-To-Product Formulas

sin D + sin E = 2 sin
D + E

2
cos

D − E
2

(A.31)

sin D − sin E = 2 cos
D + E

2
sin

D − E
2

(A.32)

cos D + cos E = 2 cos
D + E

2
cos

D − E
2

(A.33)

cos D − cos E =−2 sin
D + E

2
sin

D − E
2

(A.34)

A.2.10 Product-To-Sum Formulas

sin D sin E =
1
2
[cos(D − E) − cos(D + E)] (A.35)

cos D cos E =
1
2
[cos(D − E) + cos(D + E)] (A.36)

sin D cos E =
1
2
[sin(D + E) + sin(D − E)] (A.37)

cos D sin E =
1
2
[sin(D + E) − sin(D − E)] (A.38)

A.2.11 Two-To-One Formulas

� sin D + � cos D =� sin(D +)) (A.39)

=� cos(D +#)where (A.40)

� =

√
�2 + �2 (A.41)

)= arctan
�

�
(A.42)

#=− arctan
�

�
(A.43)

Math Reference 347

A.3 Matrix Inverses LINK
CC

This is a guide to inverting 1× 1, 2× 2, and = × = matrices.
Let � be the 1× 1 matrix

�=
[
0
]
. (A.44)

The inverse is simply the reciprocal:

�−1 =
[
1/0

]
. (A.45)

Let � be the 2× 2 matrix

�=

[
111 112
121 122

]
. (A.46)

It can be shown that the inverse follows a simple pattern:

�−1 =
1

det �

[
122 −112
−121 111

]
(A.47)

=
1

111122 − 112121

[
122 −112
−121 111

]
. (A.48)

Let � be an = × = matrix. It can be shown that its inverse is

�−1 =
1

det�
adj�, (A.49)

where adj is the adjoint of �.

A.4 Euler’s Formulas LINK
IV

Euler’s formula is our bridge back-and forth between trigonomentric forms
(cos� and sin�) and complex exponential form (4 9�):

4 9� = cos�+ 9 sin�. (A.50)

Here are a few useful identities implied by Euler’s formula.

4−9� = cos�− 9 sin� (A.51a)

cos�=<(4 9�) (A.51b)

=
1
2

(
4 9� + 4−9�

)
(A.51c)

sin�==(4 9�) (A.51d)

=
1
92

(
4 9� − 4−9�

)
. (A.51e)

https://sys.ricopic.one/cc
https://sys.ricopic.one/cc
https://sys.ricopic.one/iv
https://sys.ricopic.one/iv

348 Appendix A

A.5 Laplace Transforms LINK
B5

The definition of the one-side Laplace and inverse Laplace transforms follow.

Definition A.1

Laplace transforms (one-sided)def:laplace-transforms Laplace transform ℒ:

ℒ(H(C))=.(B)=
ˆ ∞

0
H(C)4−BC3C. (A.52)

Inverse Laplace transform ℒ−1:

ℒ−1(.(B))= H(C)= 1
2�9

ˆ �+9∞

�−9∞
.(B)4BC3B. (A.53)

See ?? for a list of properties and common transforms.

https://sys.ricopic.one/b5
https://sys.ricopic.one/b5

B Advanced Topics LINK
AH

This appendix covers topics considered advanced for an undergraduate system dynamics
course.

B.1 Systems with Repeated Eigenvalues LINK
RI

This topic is fully treated by (Brogan 1991; p 250), but not by (Rowell1997).
Every = × = matrix has = eigenvalues, and for each distinct eigenvalue �8 , a
linear independent eigenvector m8 exists. For every eigenvalue �8 repeated �8 times (termed
algebraic multiplicity of �8), any number @8 (termed geometric multiplicity or degeneracy of �8)
up to and including �8 of independent eigenvectors may exist: 1 ≤ @8 ≤ �8 . @8 is equal to the
dimension of the null space of �− O�8 ,

@8 = = − rank(�−�8O).

This gives rise to the three cases that follow.

full degeneracy When @8 =�8 , the eigenvalue problem has @8 =�8 independent solutions
for m8 . So, even though there were not = distinct eigenvalues, = distinct eigenvectors
still exist and we can diagonalize or decouple the system as before.

simple degeneracy When @8 = 1, the eigenvalue problem has @8 = 1 independent solutions
for m8 . We would still like to construct a basis set of = independent vectors, but they
can no longer be eigenvectors, and we will no longer be able to fully diagonalize
or decouple the system. There are multiple ways of doing this (e.g. Gram-Schmidt),
but the typical and most nearly diagonal way is to construct �8 − @8 generalized eigen-
vectors (here also called m8), which will be included in the modal matrix " along
with the eigenvectors. The generalized eigenvectors are found by solving the usual
eigenvalue/vector problem for the first eigenvector m1

8
corresponding to �8 , then

solving it again with the following equations to find the generalized eigenvectors

(�−�8)m2
8
=m1

8

(�−�8)m3
8
=m2

8

...

https://sys.ricopic.one/ah
https://sys.ricopic.one/ah
https://sys.ricopic.one/ri
https://sys.ricopic.one/ri

350 Appendix B

This forms the modal matrix". The block-diagonal Jordan formmatrix �, analogous
to the diagonal � is

� ="−1�",

which gives the most-decoupled state transition matrix

Φ(C)="4 �C"−1.

general degeneracy If 1 < @8 <�8 , the preceding method applies, but it may be ambiguous
as to which eigenvector the generalized eigenvectors correspond (or how many for
each). This can be approached by trial and error or a systematic method presented
by (Brogan 1991; p 255).

C Summaries LINK
2G

This appendix contains summaries.

C.1 Summary of System Representations LINK
WV

The system representations used in this book are summarized in ??.

Figure C.1. Relations among system representations.

https://sys.ricopic.one/2g
https://sys.ricopic.one/2g
https://sys.ricopic.one/wv
https://sys.ricopic.one/wv

352 Appendix C

C.2 Summary of One-Port Elements LINK
97

The one table to rule them all, table C.1.

Table C.1: parameters, elemental equations, and impedances of one-port elements for
generalized, mechanical, electrical, fluid, and thermal systems.

generalized
mechanical
translation

mechanical
rotation

electrical fluid thermal

variables
across V velocity E angular vel. Ω voltage E pressure % temp.)
through ℱ force 5 torque) current 8 vol. fr. & heat fr. @

A-type

capacitor capacitor mass mom. inertia capacitor capacitor capacitor
capacitance � < � � � �

elem. eq.
3V�

3C
=

1
�
ℱ�

3E<

3C
=

1
<
5<

3Ω�

3C
=

1
�
)�

3E�
3C

=
1
�
8�

3%�
3C

=
1
�
&�

3)�
3C

=
1
�
@�

impedance
1
�B

1
<B

1
�B

1
�B

1
�B

1
�B

T-type

inductor inductor spring rot. spring inductor inertance
inductance ! 1/: 1/: ! �

elem. eq.
3ℱ!
3C

=
1
!
V!

35:

3C
= :E:

3):
3C

= :Ω:
38!
3C

=
1
!
E!

3&�
3C

=
1
�
%�

impedance !B B/: B/: !B �B

D-type

resistor resistor damper rot. damper resistor resistor resistor
resistance ' 1/� 1/� ' ' '

elem. eq. V' =ℱ'' E� = 5�/� Ω� =)�/� E' = 8'' %' =&'')' = @''

impedance ' 1/� 1/� ' ' '

C.3 Laplace Transforms LINK
7K

Table C.2 is a table with functions of time 5 (C) on the left and correspond-
ing Laplace transforms !(B) on the right. Where applicable, B = �+ 9$ is the
Laplace transform variable,) is the time-domain period, $02�/) is the corresponding

angular frequency, 9 =
√
−1, 0 ∈R+, and 1, C0 ∈R are constants.

Table C.2. Laplace transform identities.

function of time C function of Laplace B

01 51(C) + 02 52(C) 01�1(B) + 02�2(B)

5 (C − C0) �(B)4−C0B

5 ′(C) B�(B) − 5 (0)

https://sys.ricopic.one/97
https://sys.ricopic.one/97
https://sys.ricopic.one/7k
https://sys.ricopic.one/7k

Summaries 353

3= 5 (C)
3C=

B=�(B) + B(=−1) 5 (0) + B(=−2) 5 ′(0) + · · · + 5 (=−1)(0)ˆ C

0
5 (�)3� 1

B
�(B)

C 5 (C) −�′(B)

51(C) ∗ 52(C)=
ˆ ∞

−∞
51(�) 52(C − �)3� �1(B)�2(B)

�(C) 1

DB (C) 1/B

DA (C) 1/B2

C=−1/(= − 1)! 1/B=

4−0C
1

B + 0
C4−0C

1
(B + 0)2

1
(= − 1)! C

=−14−0C
1

(B + 0)=
1

0 − 1 (4
0C − 41C) 1

(B − 0)(B − 1) (0 ≠ 1)

1
0 − 1 (04

0C − 141C) B

(B − 0)(B − 1) (0 ≠ 1)

sin $C
$

B2 +$2

cos $C
B

B2 +$2

40C sin $C
$

(B − 0)2 +$2

40C cos $C
B − 0

(B − 0)2 +$2

C.4 Fourier Transforms LINK
SB

Table C.3 is a table with functions of time 5 (C) on the left and corresponding
Fourier transforms �($) on the right. Where applicable,) is the time-domain

period, $02�/) is the corresponding angular frequency, 9 =
√
−1, 0 ∈R+, and 1, C0 ∈R are

constants. Furthermore, 54 and 50 are even and odd functions of time, respectively, and it
can be shown that any function 5 can be written as the sum 5 (C)= 54 (C) + 50(C). (Hsu 1970;
appendix E)

https://sys.ricopic.one/sb
https://sys.ricopic.one/sb

354 Appendix C

Table C.3. Fourier transform identities.

function of time C function of frequency $

01 51(C) + 02 52(C) 01�1($) + 02�2($)

5 (0C) 1
|0 | �($/0)

5 (−C) �(−$)

5 (C − C0) �($)4−9$C0

5 (C) cos $0C
1
2
�($−$0) +

1
2
�($+$0)

5 (C) sin $0C
1
92
�($−$0) −

1
92
�($+$0)

54 (C) <�($)

50(C) 9=�($)

�(C) 2� 5 (−$)

5 ′(C) 9$�($)
3= 5 (C)
3C=

(9$)=�($)ˆ C

−∞
5 (�)3� 1

9$
�($) +��(0)�($)

−9C 5 (C) �′($)

(−9C)= 5 (C) 3=�($)
3$=

51(C) ∗ 52(C)=
ˆ ∞

−∞
51(�) 52(C − �)3� �1($)�2($)

51(C) 52(C)
1

2�
�1($) ∗ �2($)=

1
2�

ˆ ∞

−∞
�1(
)�2($−
)3

4−0CDB (C)
1

9$+ 0
4−0 |C |

20
02 +$2

4−0C
2 √

�/0 4−$2/(40)

1 for |C | < 0/2, else 0
0 sin(0$/2)
0$/2

C4−0CDB (C)
1

(0 + 9$)2
C=−1

(= − 1)! 4
−0C)=DB (C)

1
(0 + 9$)=

1
02 + C2

�
0
4−0 |$ |

�(C) 1

Summaries 355

�(C − C0) 4−9$C0

DB (C) ��($) + 1
9$

DB (C − C0) ��($) + 1
9$
4−9$C0

1 2��($)

C 2�9�′($)

C= 2�9=
3=�($)
3$=

4 9$0C 2��($−$0)

cos $0C ��($−$0) +��($+$0)

sin $0C −9��($−$0) + 9��($+$0)

DB (C) cos $0C
9$

$2
0 −$2

+ �
2
�($−$0) +

�
2
�($+$0)

DB (C) sin $0C
$0

$2
0 −$2

+ �
29

�($−$0) −
�
29

�($+$0)

CDB (C) 9��′($) − 1/$2

1/C �9 − 2�9DB ($)

1/C=
(−9$)=−1

(= − 1)! (�9 − 2�9DB ($))

sgn C
2
9$

∞∑
==−∞

�(C − =)) $0

∞∑
==−∞

�($− =$0)

Bibliography

Brogan, William L. 1991.Modern Control Theory. Third. Prentice Hall.

Choukchou-Braham, A., B. Cherki, M. Djemaı̈, and K. Busawon. 2013. Analysis and Control of
Underactuated Mechanical Systems. SpringerLink : Bücher. Springer International Publishing.
https://link.springer.com/content/pdf/bbm%3A978-3-319-02636-7%2F1.pdf.

Hsu, Hwei P. 1970. Fourier Analysis. Simon / Schuster. http://gen.lib.rus.ec/book/index.php
?md5=24D6068CC9DEC5E41EC67CC79FD78912.

Strogatz, S.H., and M. Dichter. 2016. Nonlinear Dynamics and Chaos. Second. Studies in
Nonlinearity. Avalon Publishing.

https://link.springer.com/content/pdf/bbm%3A978-3-319-02636-7%2F1.pdf
http://gen.lib.rus.ec/book/index.php?md5=24D6068CC9DEC5E41EC67CC79FD78912
http://gen.lib.rus.ec/book/index.php?md5=24D6068CC9DEC5E41EC67CC79FD78912

Contributors

Associate Professor Rico A. R. Picone
Department of Mechanical Engineering
Saint Martin’s University
Lacey, Washington, USA

	Table of Contents
	1 Introduction
	1.1 The systems approach
	1.2 State-determined systems
	1.3 Energy, power, and lumping
	1.3.1 Lumping

	1.4 Mechanical translational elements
	1.4.1 Translational springs
	1.4.2 Point-masses
	1.4.3 Dampers
	1.4.4 Force and velocity sources

	1.5 Mechanical rotational elements
	1.5.1 Rotational springs
	1.5.2 Moments of inertia
	1.5.3 Rotational dampers
	1.5.4 Torque and angular velocity sources

	1.6 Electronic elements
	1.6.1 Capacitors
	1.6.2 Inductors
	1.6.3 Resistors
	1.6.4 Sources

	1.7 Generalized through- and across-variables
	1.8 Generalized one-port elements
	1.8.1 A-type energy storage elements
	1.8.2 T-type energy storage elements
	1.8.3 D-type energy dissipative elements
	1.8.4 Sources

	1.9 Problems

	2 Linear graph models
	2.1 Introduction to linear graphs
	2.2 Sign convention
	2.2.1 Electronic systems
	2.2.2 Translational mechanical systems
	2.2.3 Rotational mechanical systems

	2.3 Element interconnection laws
	2.4 Systematic linear graph modeling
	2.5 Problems

	3 State-space models
	3.1 State variable system representation
	3.2 State and output equations
	3.3 Normal trees
	3.4 Normal tree to state-space
	3.5 State-space model of a translational mechanical system
	3.6 State-space model of a rotational mechanical system
	3.7 Problems

	4 Electromechanical systems
	4.1 Ideal transducers
	4.2 Modeling with transducers
	4.2.1 State-space modeling with transducers

	4.3 DC motors
	4.3.1 Lorentz force
	4.3.2 Permanent magnet DC motors
	4.3.3 Wound stator DC motors
	4.3.4 Brushless DC motors
	4.3.5 A PMDC motor model
	4.3.6 Motor constants
	4.3.7 Animations

	4.4 Modeling a real electromechanical system
	4.4.1 Linear graph model
	4.4.2 State-space model

	4.5 DC motor performance in steady-state
	4.5.1 Modeling the test system
	4.5.2 Steady-state performance analysis

	4.6 Transient DC motor performance
	4.7 Simulating the step response
	4.8 Estimating parameters from the step response
	4.9 Driving motors
	4.9.1 Motor curves

	4.10 Problems

	5 Linear time-invariant system properties
	5.1 Superposition, derivative, and integral properties
	5.2 Equilibrium and stability properties
	5.2.1 Stability defined by the free response
	5.2.2 Stability defined by the forced response

	5.3 Vibration isolation table analysis
	5.3.1 Linear graph and state-space models
	5.3.2 Equilibrium
	5.3.3 Transfer function model
	5.3.4 Input-output differential equation
	5.3.5 Step response
	5.3.6 Stability

	5.4 When gravity ghosts you
	5.5 Problems

	6 Qualities of transient response
	6.1 Characteristic transient responses
	6.2 First-order systems in transient response
	6.2.1 Free response
	6.2.2 Step response
	6.2.3 Impulse and ramp responses

	6.3 Second-order systems in transient response
	6.3.1 Free response
	6.3.2 Step response
	6.3.3 Impulse and ramp responses
	6.3.4 An example with superposition

	6.4 Problems

	7 State-space response
	7.1 Solving for the state-space response
	7.1.1 State response
	7.1.2 State transition matrix
	7.1.3 Output response

	7.2 Linear algebraic eigenproblem
	7.2.1 Solving for eigenvalues
	7.2.2 Solving for eigenvectors

	7.3 Computing eigendecompositions
	7.3.1 Matlab eigendecompositions
	7.3.2 Python eigendecompositions

	7.4 Diagonalizing basis
	7.4.1 Changing basis in the state equation
	7.4.2 Modal and eigenvalue matrices
	7.4.3 Diagonalization of the state equation
	7.4.4 Computing the state transition matrix

	7.5 A vibration example with two modes
	7.6 Analytic and numerical output response example in Matlab
	7.7 Simulating state-space response
	7.7.1 Analytic Solution
	7.7.2 Numerical solution

	7.8 Problems

	8 Lumped-parameter modeling fluid and thermal systems
	8.1 Fluid system elements
	8.1.1 Fluid inertances
	8.1.2 Fluid capacitors
	8.1.3 Fluid resistors
	8.1.4 Flowrate and pressure drop sources
	8.1.5 Generalized element and variable types

	8.2 Thermal system elements
	8.2.1 Thermal capacitors
	8.2.2 Thermal resistors
	8.2.3 Heat flow rate and temperature sources
	8.2.4 Generalized element and variable types

	8.3 Fluid transducers
	8.4 State-space model of a hydroelectric dam
	8.4.1 Normal tree, order, and variables
	8.4.2 Elemental equations
	8.4.3 Continuity and compatibility equations
	8.4.4 State equation

	8.5 Thermal finite element model
	8.6 Problems

	9 Fourier series and transforms
	9.1 Fourier series
	9.2 Complex Fourier series example
	9.3 Fourier transform
	9.4 Discrete and fast Fourier transforms
	9.5 Problems

	10 Laplace transforms
	10.1 Introduction
	10.2 Laplace transform and its inverse
	10.2.1 The Laplace transform
	10.2.2 The inverse Laplace transform

	10.3 Properties of the Laplace transform
	10.3.1 Existence
	10.3.2 Linearity
	10.3.3 Time-shifting
	10.3.4 Time-differentiation
	10.3.5 Time-integration
	10.3.6 Convolution
	10.3.7 Final value theorem

	10.4 Inverse Laplace transforming
	10.4.1 Inverse transform with a partial fraction expansion in Matlab
	10.4.2 Just clubbing it with Matlab

	10.5 Solving io ODEs with Laplace
	10.6 Problems

	11 Transfer functions
	11.1 Introducing Transfer Functions
	11.1.1 Defining Transfer Functions
	11.1.2 Bridging transfer functions and I/O differential equations
	11.1.3 Bridging transfer functions and state-space models

	11.2 Poles and zeros
	11.2.1 Pole-zero plots and stability
	11.2.2 Second-order systems

	11.3 Transfer Functions in Python
	11.3.1 Define a Symbolic Transfer Function
	11.3.2 Use DySys Methods
	11.3.3 Convert to Control Systems Library Transfer Function
	11.3.4 Constructing Control Systems Library Transfer Functions from Scratch

	11.4 Exploring transfer functions in Matlab
	11.5 ZPK transfer functions in Matlab
	11.6 Problems

	12 Impedance-based modeling
	12.1 Input impedance and admittance
	12.1.1 Impedance of ideal passive elements
	12.1.2 Impedance of interconnected elements

	12.2 Impedance with two-port elements
	12.3 Transfer functions via impedance
	12.4 Impedance modeling example in Matlab
	12.5 Norton and Thévenin theorems
	12.5.1 Norton's theorem
	12.5.2 Converting between Thévenin and Norton equivalents

	12.6 The divider method
	12.6.1 Across-variable dividers
	12.6.2 Through-variable dividers
	12.6.3 Transfer functions using dividers

	12.7 Problems

	13 Frequency response
	13.1 Frequency and impulse response
	13.1.1 Frequency response functions
	13.1.2 Frequency response
	13.1.3 Impulse response

	13.2 Sinusoidal input, frequency response
	13.3 Bode plots
	13.4 Bode plots for simple transfer functions
	13.4.1 Constant gain
	13.4.2 Pole and zero at the origin
	13.4.3 Real pole and real zero
	13.4.4 Complex conjugate pole pairs and zero pairs

	13.5 Sketching Bode plots
	13.6 Periodic input, frequency response
	13.7 Problems

	14 Nonlinear systems and linearization
	14.0.1 Autonomous and nonautonomous systems
	14.0.2 Equilibrium

	14.1 Linearization
	14.1.1 Taylor series expansion

	14.2 Nonlinear system characteristics
	14.2.1 Those in-common with linear systems
	14.2.2 Stability
	14.2.3 Qualities of equilibria

	14.3 Nonlinear Systems in Python
	14.3.1 Defining a Nonlinear System

	14.4 Nonlinear systems in Matlab
	14.4.1 Defining a nonlinear system
	14.4.2 Simulating a nonlinear system
	14.4.3 Plotting the response

	14.5 Nonlinear fluid system example
	14.5.1 Normal tree, order, and variables
	14.5.2 Elemental, continuity, and compatibility equations
	14.5.3 State equation
	14.5.4 Simulation
	14.5.5 Nonlinear resistance
	14.5.6 Numerical solution

	14.6 Problems

	A Math Reference
	A.1 Quadratic Forms
	A.1.1 Completing the Square

	A.2 Trigonometry
	A.2.1 Triangle Identities
	A.2.2 Reciprocal Identities
	A.2.3 Pythagorean Identities
	A.2.4 Cofunction Identities
	A.2.5 Even-Odd Identities
	A.2.6 Sum-Difference Formulas
	A.2.7 Double Angle Formulas
	A.2.8 Power-Reducing or Half-Angle Formulas
	A.2.9 Sum-to-Product Formulas
	A.2.10 Product-to-Sum Formulas
	A.2.11 Two-to-One Formulas

	A.3 Matrix Inverses
	A.4 Euler's Formulas
	A.5 Laplace Transforms

	B Advanced topics
	B.1 Systems with repeated eigenvalues

	C Summaries
	C.1 Summary of system representations
	C.2 Summary of one-port elements
	C.3 Laplace transforms
	C.4 Fourier transforms

	Bibliography

